Skip to main content Accessibility help

Electron microscopy of high-temperature and high-pressure as-grown diamond crystals

  • Long-Wei Yin (a1), Mu-Sen Li (a1), Jian-Jun Cui (a1), Bin Xu (a1), Jian-Hong Gong (a1), Zhao-Yin Hao (a2) and Jiong-Fa Zhang (a3)...


Electron microscopy was used to investigate microstructures of diamond single crystals prepared at high temperature and high pressure (HPHT) from the Fe–Ni–C system. Analysis through selected-area electron diffraction pattern suggests that the crystal structure of the HPHT-grown diamond is cubic; polycrystalline diamonds are contained in the diamond. Etch pits on the (111) surface of the diamond by scanning electron microscopy revealed the dislocation motion under the action of applied stress. An array of parallel dislocation lines taken with reflection of [110] was observed directly by transmission electron microscopy (TEM). Fringe distortions and concentric dislocation loops were examined by rotation moiré images, which arose from two overlapping (111) close-packed planes rotated with respect to each other at a 5° angle. The parallel dislocation lines, distorted fringes, and concentric dislocation loops might have derived from the micro-inclusions. The parallel layers with growth cellular interface by TEM provided direct evidence that the diamond grew from solution of carbon in the molten catalyst at HPHT and the growth interface diamond was not stable.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Bundy., F.P., Hall., H.M., and Strong., H.M., Nature 176, 51 (1955).
2.Alder., B.J. and Christian., R.R., Phys. Rev. Lett. 7, 367 (1961).
3.Bundy., F.P., J. Chem. Phys. 38, 631 (1963).
4.Kanda, H., Akaishi, M., and Yamaoka, S., Appl. Phys. Lett. 65, 784 (1994).
5.Derjaguin., B.V., Spitsyn., B.V., Gorodetksy., A.E., Zakharov., A.P., Bouilov., L.I., and Aleksenko., A.E., J. Cryst. Growth 31, 44 (1975).
6.Nakazawa, H., Kanazawa, Y., Kamo, M., and Osumi, K., Thin Solid Films 151, 199 (1987).
7.Lauten., F.S., Shigesato, Y., and Sheldon., B.W., Appl. Phys. Lett. 65, 210 (1994).
8.Zhang, Y., Zhang, F., and Chen, G., J. Mater. Res. 9, 2845 (1994).
9.Hao., Z.Y., Chen., Y.F., and Chen., L.Z., J. Cryst. Growth. 135, 370 (1994).
10.Michau, D., Kanda, H., and Yamaoka, S., Diamond Relat. Mater. 8, 1125 (1999).
11.Zhu, W., Radzian., A.R., and Messier, R., J. Mater. Res. 4, 659 (1989).
12.Williams., B.E., Kong., H.S., and Glass., J.T., J. Mater. Res. 5, 801 (1990).
13.Koike, J., Mitchell., T.E., and Parkin., D.M., Appl. Phys. Lett. 59, 2515 (1991).
14.Shechtman, D., Feldman, A., and Vandin., M.D., Appl. Phys. Lett. 62, 487 (1993).
15.Theory of Dislocations, edited by Hirth., J.P. and Lothe, J. (McGraw–Hill, New York, 1968).
16.Seki, Y., J. Phys. Soc. Japan. 8, 149 (1953).
17.Pashley., D.W., Menter., J.W., and Bassett., G.A., Nature 179, 752 (1957).
18.Bassett., G.A., Menter., J.W., and Pashley., D.W., Proc. R. Soc. London, Ser. A 246, 345 (1958).
19.Yin., L.W., Zou., Z.Z., and Li., M.S., Mater. Sci. Eng. A293, 106 (2000).
20.Frank, C. and Read., W.T., Phys. Rev. 79, 722 (1950).
21.Imperfections in Nearly Perfect Crystals, edited by Bardeen, J. and Herring, C. (Wiley, New York, 1952).
22.Hunt., J.D., Jackson., K.A., and Brown, H., Rev. Sci. Inst. 37, 805 (1966).
23.Mourachov, S. and Poliakov, V., Diamond Relat. Mate. 7, 309 (1998).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed