Skip to main content Accessibility help
×
Home

Electromechanical tuning of nanoscale MIM diodes by nanoindentation

  • Prakash Periasamy (a1), Michael Scott Bradley (a2), Philip A. Parilla (a3), Joseph J. Berry (a3), David S. Ginley (a3), Ryan P. O’Hayre (a4) and Corinne E. Packard (a5)...

Abstract

Nanoscale metal–insulator–metal (MIM) diodes consisting of a nanoscale-thickness insulator layer sandwiched between two dissimilar metal layers offer the potential for very high frequency alternating current to direct current signal rectification. Active nanoscale tuning of electronic tunneling through the insulator layer to form point contact diodes has previously been limited to barriers composed of soft organic films due to the force limitations of conductive-atomic force microscopy. In this paper, MIM diodes with oxide-based insulators are formed in situ with sub-nanometer depth precision and characterized using a nanoindenter equipped with electrical testing capabilities. Simultaneous measurement of both electrical and nano-mechanical information is accomplished in an MIM stack of the form Nb/Nb2O5/boron-doped diamond nanoindenter tip. Using this technique, we show that the diode behavior can be electromechanically tuned over a range of more than 1 V at equivalent currents via small changes in indentation depth and the results can be modeled using a Fowler–Nordheim approximation.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: cpackard@mines.edu

Footnotes

Hide All
b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Footnotes

References

Hide All
1. Grossman, E.N., Harvey, T.E., and Reintsema, C.D.: Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes. J. Appl. Phys. 91(12), 10134 (2002).
2. Eliasson, B.J.: Metal-insulator-metal diodes for solar energy conversion, Ph.D. Thesis, University of Colorado, Boulder, CO, 2001.
3. Hoofring, A.B., Kapoor, V.J., and Krawczonek, W.: Sub-micron nickel-oxide-gold tunnel diode detectors for rectennas. J. Appl. Phys. 66(1), 430 (1989).
4. Kotter, D.K., Novack, S.D., Slafer, W.D., and Pinhero, P.J.: Theory and manufacturing processes of solar nanoantenna electromagnetic collectors. J. Sol. Energy Eng. 132(1), 011014 (2010).
5. Osgood, R.M., Kimball, B.R., and Carlson, J.: Nanoantenna-coupled MIM nanodiodes for efficient VIS/NIR energy conversion. Proc. SPIE Int. Soc. Opt. Eng. 6652, 65203 (2007).
6. Bean, J., Tiwari, B., Szakmány, G., Bernstein, G.H., Fay, P., and Porod, W.: Nanoantenna infrared detectors, in Cellular Nanoscale Sensory Wave Computing, edited by Baatar, C., Porod, W., and Roska, T. (Springer, New York, 2010), p. 27.
7. Choi, K., Yesilkoy, F., Ryu, G., Cho, S.H., Goldsman, N., Dagenais, M. and Peckerar, M.: A focused asymmetric metal-insulator-metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis. IEEE Trans. Electron Devices 58(10), 3519 (2011).
8. Grover, S., Dmitriyeva, O., Estes, M.J., and Moddel, G.: Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotechnol. 9(6), 716 (2010).
9. Rosenfeld, D., Schmid, P.E., Szeles, S., Levy, F., Demarne, V., and Grisel, A.: Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors. Sens. Actuators, B 37(1–2), 83 (1996).
10. Masalmeh, S.K., Stadermann, H.K.E., and Korving, J.: Mixing and rectification properties of MIM diodes. Physica B 218 (1–4), 56 (1996).
11. Riccius, H.D. and Siemsen, K.J.: Point-contact diodes. Appl. Phys. A 35(2), 67 (1984).
12. Ward, D.R., Huser, F., Pauly, F., Cuevas, J.C., and Natelson, D.: Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5(10), 732 (2010).
13. Bareiss, M., Ante, F., Kalblein, D., Jegert, G., Jirauschek, C., Scarpa, G., Fabel, B., Nelson, E.M., Timp, G., Zschieschang, U., Klauk, H., Porod, W., and Lugli, P.: High-yield transfer printing of metal insulator metal nanodiodes. ACS Nano. 6(3), 2853 (2012).
14. Periasamy, P., Bergeson, J.D., Parilla, P.A., Ginley, D.S., and O'Hayre, R.P.: Metal-insulator-metal point-contact diodes as a rectifier for rectenna. Proc. IEEE, 002943 (2010).
15. Periasamy, P., Berry, J.J., Dameron, A.A., Bergeson, J.D., Ginley, D.S., O'Hayre, R.P., and Parilla, P.A.: Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 23(27), 3080 (2011).
16. Periasamy, P., Guthrey, H.L., Abdulagatov, A.I., Ndione, P.F., Berry, J.J., Ginley, D.S., George, S.M., Parilla, P.A., and O'Hayre, R.P.: Metal–insulator–metal diodes: Role of the insulator layer on the rectification performance. Adv Mater. 25(9), 1301 (2013).
17. Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., and Kushmerick, J.G.: Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97(2), 026801 (2006).
18. DelRio, F.W., Steffens, K.L., Jaye, C., Fischer, D.A., and Cook, R.F.: Elastic, adhesive, and charge transport properties of a metal-molecule-metal junction: The role of molecular orientation, order, and coverage. Langmuir 26(3), 1688 (2010).
19. Kelley, T.W. and Frisbie, C.D.: Point contact current–voltage measurements on individual organic semiconductor grains by conducting probe atomic force microscopy. J. Vac. Sci. Technol., B 18, 632 (2000).
20. Kim, D.I., Pradeep, N., DelRio, F.W., and Cook, R.F.: Mechanical and electrical coupling at metal-insulator-metal nanoscale contacts. Appl. Phys. Lett. 93, 203102 (2008).
21. Olbrich, A., Ebersberger, B., and Boit, C.: Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO2 . Appl. Phys. Lett. 73(21), 3114 (1998).
22. Shirakashi, J., Matsumoto, K., Miura, N., and Konagai, M.: Nb/Nb oxide-based planar-type metal/insulator/metal (MIM) diodes fabricated by atomic force microscope (AFM) nano-oxidation process. Jpn. J. Appl. Phys. 36(2), L1120 (1997).
23. Bhaskaran, M., Sriram, S., Ruffell, S., and Mitchell, A.: Nanoscale characterization of energy generation from piezoelectric thin films. Adv. Funct. Mater. 21(12), 2251 (2011).
24. Ruffell, S., Bradby, J., Williams, J., and Warren, O.: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22, 578 (2007).
25. Grundner, M. and Halbritter, J.: On the natural Nb2O5 growth on Nb at room-temperature. Surf. Sci. 136(1), 144 (1984).
26. Sprouster, D.J., Ruffell, S., Bradby, J.E., Williams, J.S., Lockrey, M.N., Phillips, M.R., Major, R.C., and Warren, O.L.: Structural characterization of B-doped diamond nanoindentation tips. J. Mater. Res. 26(24), 3051 (2011).
27. Tsui, T.Y., Vlassak, J., and Nix, W.D.: Indentation plastic displacement field: Part II. The case of hard films on soft substrates. J. Mater. Res. 14(6), 2204 (1999).
28. Simmons, J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34(9), 2581 (1963).
29. Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793 (1963).
30. Simmons, J.G.: Low-voltage current-voltage relationship of tunnel junctions. J. Appl. Phys. 34(1), 238 (1963).
31. Simmons, J.G.: Potential barriers and emission‐limited current flow between closely spaced parallel metal electrodes. J. Appl. Phys. 35(8), 2472 (1964).
32. Stratton, R.: Volt-current characteristics for tunneling through insulating films. J. Phys. Chem. Solids 23(9), 1177 (1962).
33. Hartman, T.E.: Tunneling through asymmetric barriers. J. Appl. Phys. 35(11), 3283 (1964).
34. Brinkman, W.F.: Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41(5), 1915 (1970).
35. Hansen, K. and Brandbyge, M.: Current-voltage relation for thin tunnel barriers: Parabolic barrier model. J. Appl. Phys. 95(7), 3582 (2004).
36. Muhammad, A.J., Morgan, D.V., and Guile, A.E.: Electronic conduction in Nb/Nb2O5/In structures and the effect of space-charge overlap. Phys. Status Solidi A 90(1), 371 (1985).
37. O'Regan, T., Chin, M., Tan, C., and Birdwell, A.: Modeling, Fabrication, and Electrical Testing of Metal-Insulator-Metal Diode (Army Research Laboratory, ARL-TN-0464, Adelphi, MD, 2011).

Electromechanical tuning of nanoscale MIM diodes by nanoindentation

  • Prakash Periasamy (a1), Michael Scott Bradley (a2), Philip A. Parilla (a3), Joseph J. Berry (a3), David S. Ginley (a3), Ryan P. O’Hayre (a4) and Corinne E. Packard (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed