Skip to main content Accessibility help
×
Home

Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling

  • Peipei Yang (a1), Ying Liu (a1), Xiuchen Zhao (a1), Jingwei Cheng (a1) and Hong Li (a1)...

Abstract

We investigated FeCoNiCrAl0.8 high entropy alloy and amorphous alloy powders synthesized simply via high energy ball milling for 10 and 20 h. The electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy and amorphous alloy powders were investigated. The structure and morphology of FeCoNiCrAl0.8 were analyzed by scanning electron microscopy with energy-dispersive spectrometry and x-ray diffraction, which demonstrated that FeCoNiCrAl0.8 powders were in irregular shape and monodisperse with an average size of 5–15 µm. The minimum reflection loss of FeCoNiCrAl0.8 high entropy alloy powders was −41.8 dB at 11.9 GHz with a thickness of 2.3 mm and effective bandwidth (RL ≤ −10 dB) was up to 4.7 GHz (8.7–13.4 GHz), while the minimum reflection loss of FeCoNiCrAl0.8 amorphous alloy powders was observed to be −35.5 dB at 14.6 GHz with a thickness of 1.7 mm and effective bandwidth varied from 12.7 to 16.3 GHz (3.6 GHz). Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders is better than that of amorphous alloy powders, which demonstrated that phase structures of FeCoNiCrAl0.8 alloy powders affect electromagnetic wave absorption properties.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yingliu@bit.edu.cn

References

Hide All
1. Kao, Y-F., Lee, T-D., Chen, S-K., and Chang, Y-S.: Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 52(3), 1026 (2010).
2. Zhu, G., Liu, Y., and Ye, J.: Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int. J. Refract. Met. Hard Mater. 44, 35 (2014).
3. Jiang, L., Cao, Z.Q., Jie, J.C., Zhang, J.J., Lu, Y.P., Wang, T.M., and Li, T.J.: Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J. Alloys Compd. 649, 585 (2015).
4. Poletti, M.G. and Battezzati, L.: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).
5. Ye, X., Ma, M., Liu, W., Li, L., Zhong, M., Liu, Y., and Wu, Q.: Synthesis and characterization of high-entropy alloy AlXFeCoNiCuCr by laser cladding. Adv. Mater. Sci. Eng. 2011, 485942 (2011).
6. Zuo, T., Yang, X., Liaw, P.K., and Zhang, Y.: Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171 (2015).
7. Wang, J., Zheng, Z., Xu, J., and Wang, Y.: Microstructure and magnetic properties of mechanically alloyed FeSiSAlNi (Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 58 (2014).
8. Lucas, M.S., Belyea, D., Bauer, C., Bryant, N., Michel, E., Turgut, Z., Leontsev, S.O., Horwath, J., Semiatin, S.L., McHenry, M.E., and Miller, C.W.: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113(17), 17A923 (2013).
9. Chen, Q., Zhou, K., Jiang, L., Lu, Y., and Li, T.: Effects of Fe content on microstructures and properties of AlCoCrFe (x) Ni high-entropy alloys. Arabian J. Sci. Eng. 40(12), 3657 (2015).
10. Dong, Y., Zhou, K., Lu, Y., Gao, X., Wang, T., and Li, T.: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des. 57, 67 (2014).
11. Zhang, H., Tian, X., Wang, C., Luo, H., Hu, J., Shen, Y., and Xie, A.: Facile synthesis of RGO/NiO composites and their excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 314, 228 (2014).
12. Yuan, X., Cheng, L., Kong, L., Yin, X., and Zhang, L.: Preparation of titanium carbide nanowires for application in electromagnetic wave absorption. J. Alloys Compd. 596, 132 (2014).
13. Zhao, B., Zhao, W., Shao, G., Fan, B., and Zhang, R.: Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl. Mater. Interfaces 7(23), 12951 (2015).
14. Zhao, R., Lei, Y., Zhan, Y., Meng, F., Jia, K., Zhong, J., and Liu, X.: Solid-state pyrolysis of iron phthalocyanine polymer into iron nanowire inside carbon nanotube and their novel electromagnetic properties. J. Mater. Res. 26(18), 2369 (2011).
15. Tong, G., Wu, W., Qiao, R., Yuan, J., Guan, J., and Qian, H.: Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials. J. Mater. Res. 26(13), 1639 (2011).
16. Zhao, B., Shao, G., Fan, B., Zhao, W., Xie, Y., and Zhang, R.: Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. Phys. Chem. Chem. Phys. 17(14), 8802 (2015).
17. Wu, Y., Han, M., Liu, T., and Deng, L.: Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes. J. Appl. Phys. 118(2), 023902 (2015).
18. Wang, G., Wang, L., Gan, Y., and Lu, W.: Fabrication and microwave properties of hollow nickel spheres prepared by electroless plating and template corrosion method. Appl. Surf. Sci. 276, 744 (2013).
19. Zhao, B., Fan, B., Shao, G., Zhao, W., and Zhang, R.: Facile synthesis of novel heterostructure based on SnO2 nanorods grown on submicron Ni walnut with tunable electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 7(33), 18815 (2015).
20. Tong, G., Ma, J., Wu, W., Hua, Q., Qiao, R., and Qian, H.: Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles. J. Mater. Res. 26(5), 682 (2011).
21. Zhao, B., Shao, G., Fan, B., Zhao, W., and Zhang, R.: Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Adv. 5(53), 42587 (2015).
22. Kunce, I., Polanski, M., Karczewski, K., Plocinski, T., and Kurzydlowski, K.J.: Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping. J. Alloys Compd. 648, 751 (2015).
23. Fu, Z., Chen, W., Wen, H., Chen, Z., and Lavernia, E.J.: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175 (2015).
24. Fang, S., Chen, W., and Fu, Z.: Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973 (2014).
25. Chen, J., Niu, P., Wei, T., Hao, L., Liu, Y., Wang, X., and Peng, Y.: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630 (2015).
26. Kuhrt, C. and Schultz, L.: Formation and magnetic-properties of nanocrystalline mechanically alloyed Fe–Co and Fe–Ni. J. Appl. Phys. 73(10), 6588 (1993).
27. Jiraskova, Y., Bursik, J., Turek, I., Hapla, M., Titov, A., and Zivotsky, O.: Phase and magnetic studies of the high-energy alloyed Ni–Fe. J. Alloys Compd. 594, 133 (2014).
28. Gheisari, K. and Javadpour, S.: The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders. J. Magn. Magn. Mater. 343, 133 (2013).
29. Dong, Y., Lu, Y., Jiang, L., Wang, T., and Li, T.: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105 (2014).
30. Zhao, B., Shao, G., Fan, B., Xie, Y., and Zhang, R.: Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route. J. Magn. Magn. Mater. 372, 195 (2014).
31. Zhao, B., Shao, G., Fan, B., Xie, Y., Wang, B., and Zhang, R.: Solvothermal synthesis and electromagnetic absorption properties of pyramidal Ni superstructures. J. Mater. Res. 29(13), 1431 (2014).
32. Zhao, B., Shao, G., Fan, B., Zhao, W., and Zhang, R.: Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 17(4), 2531 (2015).
33. Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29(18), 2198 (2014).
34. Du, F., Tong, G., Tong, C., Liu, Y., and Tao, J.: Selective synthesis and shape-dependent microwave electromagnetic properties of polymorphous ZnO complex architectures. J. Mater. Res. 29(5), 649 (2014).
35. Zhao, B., Shao, G., Fan, B., Zhao, W., and Zhang, R.: Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core-shell composite microspheres. RSC Adv. 4(101), 57424 (2014).
36. Wen, S., Liu, Y., Zhao, X., Cheng, J., and Li, H.: Facile synthesis of novel cobalt particles by reduction method and their microwave absorption properties. Powder Technol. 264, 128 (2014).
37. Koundinya, N.T.B.N., Babu, C.S., Sivaprasad, K., Susila, P., Babu, N.K., and Baburao, J.: Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J. Mater. Eng. Perform. 22(10), 3077 (2013).
38. Zhu, Z., Sun, X., Xue, H., Guo, H., Fan, X., Pan, X., and He, J.: Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C 2(32), 6582 (2014).
39. Zhang, X-J., Wang, G-S., Cao, W-Q., Wei, Y-Z., Liang, J-F., Guo, L., and Cao, M-S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6(10), 7471 (2014).
40. Guo, S., Wang, L., and Wu, H.: Facile synthesis and enhanced electromagnetic wave absorption of thorny-like Fe–Ni alloy/ordered mesoporous carbon composite. Adv. Powder Technol. 26(4), 1250 (2015).
41. Wang, C., Han, X., Zhang, X., Hu, S., Zhang, T., Wang, J., Du, Y., Wang, X., and Xu, P.: Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J. Phys. Chem. C 114(35), 14826 (2010).
42. Yang, J., Zhang, J., Liang, C., Wang, M., Zhao, P., Liu, M., Liu, J., and Che, R.: Ultrathin BaTiO3 nanowires with high aspect ratio: A simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Appl. Mater. Interfaces 5(15), 7146 (2013).
43. Wu, G., Cheng, Y., Xie, Q., Jia, Z., Xiang, F., and Wu, H.: Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157 (2015).
44. Zhao, B., Shao, G., Fan, B., Zhao, W., Chen, Y., and Zhang, R.: Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 5(13), 9806 (2015).
45. Lv, H., Liang, X., Ji, G., Zhang, H., and Du, Y.: Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7(18), 9776 (2015).
46. Liu, Q., Cao, Q., Zhao, X., Bi, H., Wang, C., Wu, D.S., and Che, R.: Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7(7), 4233 (2015).

Keywords

Related content

Powered by UNSILO

Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling

  • Peipei Yang (a1), Ying Liu (a1), Xiuchen Zhao (a1), Jingwei Cheng (a1) and Hong Li (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.