Skip to main content Accessibility help
×
Home

Electrochemical single-step obtention and characterization of a biomimetic TiO2-HA NTs covered by chitosan

  • Rhauane Almeida Galvão (a1), Larissa Agostinho de Santa-Cruz (a1), Paloma Bantim Barreto (a1), Marla Karolyne dos Santos Horta (a2), Antonio Marcos Helgueira de Andrade (a3), Francisco José Moura (a2), Marilza Sampaio Aguilar (a4), Suzana Bottega Peripolli (a5), José Brant de Campos (a5), Isabel Renata de Souza Arruda (a6) and Giovanna Machado (a6)...

Abstract

Obtention of titanium (Ti)- and titanium dioxide (TiO2)–based nanocomposites is of great interest for biological nanomaterial applications, including for dental implants. Their mechanical properties can be improved by use of hydroxyapatite (HA) and chitosan through their biological anchorage with osseointegration and antibacterial activity. Electrochemical methods were chosen to obtain these composites in a quick and controllable way. In this work, electrochemical synthesis in one (alternated potential) or two steps (alternated or constant potential) was successfully applied. The single step (SS) obtained TiO2 + HA sample had different optical properties, as shown using ultraviolet–visible spectrometry, and the HA phase formation was proved using Raman spectroscopy. Thereby, SS_TiO2 + HA increased the corrosion resistance of titanium in artificial saliva medium, as shown by linear polarization and electrochemical impedance spectroscopy results. When using chitosan, the samples showed two corrosion interfaces, indicating its dissolution in human medium. These results indicate that the samples are excellent materials for dental implants.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: giovanna.machado@cetene.gov.br

References

Hide All
1.Sharan, J., Singh, S., Lale, S.V., Mishra, M., Koul, V., and Kharbanda, O.P.: Applications of nanomaterials in dental science: A review. J. Nanosci. Nanotechnol. 17, 2235 (2017).
2.Pokrowiecki, R., Pałka, K., and Mielczarek, A.: Nanomaterials in dentistry: A cornerstone or a black box? Nanomedicine 13, 639 (2018).
3.Hanawa, T.: Biofunctionalization of titanium for dental implant. Jpn. Dent. Sci. Rev. 46, 93 (2010).
4.Ghiciuc, C.M., Ghiciuc, O.N., Ochiuz, L., and Lupuşoru, C.E.: Antibacterial effects of metal oxides-containing nanomaterials in dentistry. In 2017 E-Health and Bioengineering Conference (EHB) (Institute of Electrical and Electronics Engineers (IEEE), New York, NY, 2017); p. 365.
5.Watcharenwong, A., Jindanant, A., and Kajitvichyanukul, P.: Characterization of pulse anodized titanium dioxide nanotubes. Key Eng. Mater. 737, 373 (2017).
6.Awad, N.K., Edwards, S.L., and Morsi, Y.S.: A Review of TiO2NTs on Ti Metal: Electrochemical Synthesis, Functionalization and Potential Use as Bone Implants. Mat. Sci. & Eng.: C 76, 1401 (2017).
7.Fathyunes, L. and Khalil-Allafi, J.: Effect of employing ultrasonic waves during pulse electrochemical deposition on the characteristics and biocompatibility of calcium phosphate coatings. Ultrason. Sonochem. 42, 293 (2018).
8.Zhao, X., Yang, L., Zuo, Y., and Xiong, J.: Hydroxyapatite coatings on titanium prepared by electrodeposition in a modified simulated body fluid. Chin. J. Chem. Eng. 17, 667 (2009).
9.Farrokhi-Rad, M., Shahrabi, T., Mahmoodi, S., and Khanmohammadi, S.: Electrophoretic deposition of hydroxyapatite-chitosan-CNTs nanocomposite coatings. Ceram. Int. 43, 4663 (2017).
10.Kar, A., Raja, K.S., and Misra, M.: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf. Coat. Technol. 201, 3723 (2006).
11.Padovani, G.C., Feitosa, V.P., Sauro, S., Tay, F.R., Durán, G., Paula, A.J., and Durán, N.: Advances in dental materials through nanotechnology: Facts, perspectives and toxicological aspects. Trends Biotechnol. 33, 621 (2015).
12.Li, Y., Pang, X., Epand, R.F., and Zhitomirsky, I.: Electrodeposition of chitosan-hemoglobin films. Mater. Lett. 65, 1463 (2011).
13.Basile, F., Benito, P., Fornasari, G., Monti, M., Scavetta, E., Tonelli, D., and Vaccari, A.: A Novel Electrochemical Route for the Catalytic Coating of Metallic Supports. Studies in surface science and catalysis 175, 51 (2010).
14.Parcharoen, Y., Kajitvichyanukul, P., Sirivisoot, S., and Termsuksawad, P.: Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications. Appl. Surf. Sci. 311, 54 (2014).
15.González-moya, J.R., Garcia-basabe, Y., Rocco, M.L.M., Pereira, M.B., Princival, J.L., Almeida, L.C., Araújo, C.M., David, D.G.F., Ferreira, A., and Machado, G.: Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation. Nanotechnology 27, 1 (2016).
16.Oliveira, W.F., Silva, G.M.M., Cabral Filho, P.E., Fontes, A., Oliveira, M.D.L., Andrade, C.A.S., Silva, M.V., Coelho, L.C.B.B., Machado, G., and Correia, M.T.S.: Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation. Mater. Sci. Eng., C 90, 664 (2018).
17.Li, G., Wu, L., and Zhang, D.: Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO. Nanoscale 5, 2118 (2013).
18.Rölla, G., Bergseth, H., and Svatun, B.: Solubilization of hydroxyapatite at neutral pH by an anionic ionic exchange resin. Acta Odontol. Scand. 38, 209 (1980).
19.Mao, W., Wilde, M., Ogura, S., Chen, J., Fukutani, K., Matsuzaki, H., and Terai, T.: Hydrogen-accelerated phase transition and diffusion in TiO2 thin films. J. Phys. Chem. C 122, 23026 (2018).
20.Yanagisawa, K. and Ovenstone, J.: Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature. J. Phys. Chem. B 103, 7781 (1999).
21.Escobar-Sierra, D.M., Martins, J., and Ossa-Orozco, C.P.: Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison. Rev. Fac. Ing. 1, 24 (2015).
22.Lobo, A.O., Otubo, J., Matsushima, J.T., and Corat, E.J.: Rapid obtaining of nano-hydroxyapatite bioactive films on NiTi shape memory alloy by electrodeposition process. J. Mater. Eng. Perform. 20, 793 (2011).
23.Ahmadi, S., Mohammadi, I., and Sadrnezhaad, S.K.: Hydroxyapatite based and anodic Titania nanotube biocomposite coatings: Fabrication, characterization and electrochemical behavior. Surf. Coat. Technol. 287, 67 (2016).
24.Seah, K.H.W. and Chen, X.: A comparison between the corrosion characteristics of 316 stainless steel, solid titanium and porous titanium. Corros. Sci. 34, 1841 (1993).
25.Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., and Okabe, T.: In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials 20, 183 (1999).
26.Aparicio, C., Javier Gil, F., Fonseca, C., Barbosa, M., and Planell, J.A.: Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 24, 263 (2003).
27.Wang, H.X., Guan, S.K., Wang, X., Ren, C.X., and Wang, L.G.: In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 6, 1743 (2010).
28.Anawati, , Tanigawa, H., Asoh, H., Ohno, T., Kubota, M., and Ono, S.: Electrochemical corrosion and bioactivity of titanium-hydroxyapatite composites prepared by spark plasma sintering. Corros. Sci. 70, 212 (2013).
29.Asri, R.I.M., Harun, W.S.W., Samykano, M., Lah, N.A.C., Ghani, S.A.C., Tarlochan, F., and Raza, M.R.: Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng., C 77, 1261 (2017).
30.Ryan, G., Pandit, A., and Apatsidis, D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27, 2651 (2006).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Galvão et al. supplementary material
Galvão et al. supplementary material 1

 Unknown (1.7 MB)
1.7 MB

Electrochemical single-step obtention and characterization of a biomimetic TiO2-HA NTs covered by chitosan

  • Rhauane Almeida Galvão (a1), Larissa Agostinho de Santa-Cruz (a1), Paloma Bantim Barreto (a1), Marla Karolyne dos Santos Horta (a2), Antonio Marcos Helgueira de Andrade (a3), Francisco José Moura (a2), Marilza Sampaio Aguilar (a4), Suzana Bottega Peripolli (a5), José Brant de Campos (a5), Isabel Renata de Souza Arruda (a6) and Giovanna Machado (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed