Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T10:33:18.280Z Has data issue: false hasContentIssue false

Electrochemical single-step obtention and characterization of a biomimetic TiO2-HA NTs covered by chitosan

Published online by Cambridge University Press:  13 March 2019

Rhauane Almeida Galvão
Affiliation:
Laboratório de Nanomateriais (LmNano2), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife 50740-545, Brazil; and Centro de Ciências Exatas e da Natureza (CCEN), Universidade Federal de Pernambuco (UFPE), Recife 50740-545, Brazil
Larissa Agostinho de Santa-Cruz
Affiliation:
Laboratório de Nanomateriais (LmNano2), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife 50740-545, Brazil; and Centro de Ciências Exatas e da Natureza (CCEN), Universidade Federal de Pernambuco (UFPE), Recife 50740-545, Brazil
Paloma Bantim Barreto
Affiliation:
Laboratório de Nanomateriais (LmNano2), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife 50740-545, Brazil; and Centro de Ciências Exatas e da Natureza (CCEN), Universidade Federal de Pernambuco (UFPE), Recife 50740-545, Brazil
Marla Karolyne dos Santos Horta
Affiliation:
Departamento de Engenharia Química e Materiais, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-045, Brazil
Antonio Marcos Helgueira de Andrade
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
Francisco José Moura
Affiliation:
Departamento de Engenharia Química e Materiais, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-045, Brazil
Marilza Sampaio Aguilar
Affiliation:
Departamento de Engenharia, Universidade Estácio de Sá, Rio de Janeiro 20261-902, Brazil
Suzana Bottega Peripolli
Affiliation:
Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
José Brant de Campos
Affiliation:
Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
Isabel Renata de Souza Arruda
Affiliation:
Laboratório de Nanomateriais (LmNano2), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife 50740-545, Brazil
Giovanna Machado*
Affiliation:
Laboratório de Nanomateriais (LmNano2), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife 50740-545, Brazil
*
a)Address all correspondence to this author. e-mail: giovanna.machado@cetene.gov.br
Get access

Abstract

Obtention of titanium (Ti)- and titanium dioxide (TiO2)–based nanocomposites is of great interest for biological nanomaterial applications, including for dental implants. Their mechanical properties can be improved by use of hydroxyapatite (HA) and chitosan through their biological anchorage with osseointegration and antibacterial activity. Electrochemical methods were chosen to obtain these composites in a quick and controllable way. In this work, electrochemical synthesis in one (alternated potential) or two steps (alternated or constant potential) was successfully applied. The single step (SS) obtained TiO2 + HA sample had different optical properties, as shown using ultraviolet–visible spectrometry, and the HA phase formation was proved using Raman spectroscopy. Thereby, SS_TiO2 + HA increased the corrosion resistance of titanium in artificial saliva medium, as shown by linear polarization and electrochemical impedance spectroscopy results. When using chitosan, the samples showed two corrosion interfaces, indicating its dissolution in human medium. These results indicate that the samples are excellent materials for dental implants.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sharan, J., Singh, S., Lale, S.V., Mishra, M., Koul, V., and Kharbanda, O.P.: Applications of nanomaterials in dental science: A review. J. Nanosci. Nanotechnol. 17, 2235 (2017).CrossRefGoogle ScholarPubMed
Pokrowiecki, R., Pałka, K., and Mielczarek, A.: Nanomaterials in dentistry: A cornerstone or a black box? Nanomedicine 13, 639 (2018).CrossRefGoogle ScholarPubMed
Hanawa, T.: Biofunctionalization of titanium for dental implant. Jpn. Dent. Sci. Rev. 46, 93 (2010).CrossRefGoogle Scholar
Ghiciuc, C.M., Ghiciuc, O.N., Ochiuz, L., and Lupuşoru, C.E.: Antibacterial effects of metal oxides-containing nanomaterials in dentistry. In 2017 E-Health and Bioengineering Conference (EHB) (Institute of Electrical and Electronics Engineers (IEEE), New York, NY, 2017); p. 365.CrossRefGoogle Scholar
Watcharenwong, A., Jindanant, A., and Kajitvichyanukul, P.: Characterization of pulse anodized titanium dioxide nanotubes. Key Eng. Mater. 737, 373 (2017).CrossRefGoogle Scholar
Awad, N.K., Edwards, S.L., and Morsi, Y.S.: A Review of TiO2NTs on Ti Metal: Electrochemical Synthesis, Functionalization and Potential Use as Bone Implants. Mat. Sci. & Eng.: C 76, 1401 (2017).Google Scholar
Fathyunes, L. and Khalil-Allafi, J.: Effect of employing ultrasonic waves during pulse electrochemical deposition on the characteristics and biocompatibility of calcium phosphate coatings. Ultrason. Sonochem. 42, 293 (2018).CrossRefGoogle ScholarPubMed
Zhao, X., Yang, L., Zuo, Y., and Xiong, J.: Hydroxyapatite coatings on titanium prepared by electrodeposition in a modified simulated body fluid. Chin. J. Chem. Eng. 17, 667 (2009).CrossRefGoogle Scholar
Farrokhi-Rad, M., Shahrabi, T., Mahmoodi, S., and Khanmohammadi, S.: Electrophoretic deposition of hydroxyapatite-chitosan-CNTs nanocomposite coatings. Ceram. Int. 43, 4663 (2017).CrossRefGoogle Scholar
Kar, A., Raja, K.S., and Misra, M.: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf. Coat. Technol. 201, 3723 (2006).CrossRefGoogle Scholar
Padovani, G.C., Feitosa, V.P., Sauro, S., Tay, F.R., Durán, G., Paula, A.J., and Durán, N.: Advances in dental materials through nanotechnology: Facts, perspectives and toxicological aspects. Trends Biotechnol. 33, 621 (2015).CrossRefGoogle ScholarPubMed
Li, Y., Pang, X., Epand, R.F., and Zhitomirsky, I.: Electrodeposition of chitosan-hemoglobin films. Mater. Lett. 65, 1463 (2011).CrossRefGoogle Scholar
Basile, F., Benito, P., Fornasari, G., Monti, M., Scavetta, E., Tonelli, D., and Vaccari, A.: A Novel Electrochemical Route for the Catalytic Coating of Metallic Supports. Studies in surface science and catalysis 175, 51 (2010).Google Scholar
Parcharoen, Y., Kajitvichyanukul, P., Sirivisoot, S., and Termsuksawad, P.: Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications. Appl. Surf. Sci. 311, 54 (2014).CrossRefGoogle Scholar
González-moya, J.R., Garcia-basabe, Y., Rocco, M.L.M., Pereira, M.B., Princival, J.L., Almeida, L.C., Araújo, C.M., David, D.G.F., Ferreira, A., and Machado, G.: Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation. Nanotechnology 27, 1 (2016).CrossRefGoogle ScholarPubMed
Oliveira, W.F., Silva, G.M.M., Cabral Filho, P.E., Fontes, A., Oliveira, M.D.L., Andrade, C.A.S., Silva, M.V., Coelho, L.C.B.B., Machado, G., and Correia, M.T.S.: Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation. Mater. Sci. Eng., C 90, 664 (2018).CrossRefGoogle ScholarPubMed
Li, G., Wu, L., and Zhang, D.: Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO. Nanoscale 5, 2118 (2013).CrossRefGoogle Scholar
Rölla, G., Bergseth, H., and Svatun, B.: Solubilization of hydroxyapatite at neutral pH by an anionic ionic exchange resin. Acta Odontol. Scand. 38, 209 (1980).CrossRefGoogle ScholarPubMed
Mao, W., Wilde, M., Ogura, S., Chen, J., Fukutani, K., Matsuzaki, H., and Terai, T.: Hydrogen-accelerated phase transition and diffusion in TiO2 thin films. J. Phys. Chem. C 122, 23026 (2018).CrossRefGoogle Scholar
Yanagisawa, K. and Ovenstone, J.: Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature. J. Phys. Chem. B 103, 7781 (1999).CrossRefGoogle Scholar
Escobar-Sierra, D.M., Martins, J., and Ossa-Orozco, C.P.: Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison. Rev. Fac. Ing. 1, 24 (2015).Google Scholar
Lobo, A.O., Otubo, J., Matsushima, J.T., and Corat, E.J.: Rapid obtaining of nano-hydroxyapatite bioactive films on NiTi shape memory alloy by electrodeposition process. J. Mater. Eng. Perform. 20, 793 (2011).CrossRefGoogle Scholar
Ahmadi, S., Mohammadi, I., and Sadrnezhaad, S.K.: Hydroxyapatite based and anodic Titania nanotube biocomposite coatings: Fabrication, characterization and electrochemical behavior. Surf. Coat. Technol. 287, 67 (2016).CrossRefGoogle Scholar
Seah, K.H.W. and Chen, X.: A comparison between the corrosion characteristics of 316 stainless steel, solid titanium and porous titanium. Corros. Sci. 34, 1841 (1993).CrossRefGoogle Scholar
Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M., and Okabe, T.: In vitro corrosion resistance of titanium made using different fabrication methods. Biomaterials 20, 183 (1999).CrossRefGoogle ScholarPubMed
Aparicio, C., Javier Gil, F., Fonseca, C., Barbosa, M., and Planell, J.A.: Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 24, 263 (2003).CrossRefGoogle ScholarPubMed
Wang, H.X., Guan, S.K., Wang, X., Ren, C.X., and Wang, L.G.: In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 6, 1743 (2010).CrossRefGoogle ScholarPubMed
Anawati, , Tanigawa, H., Asoh, H., Ohno, T., Kubota, M., and Ono, S.: Electrochemical corrosion and bioactivity of titanium-hydroxyapatite composites prepared by spark plasma sintering. Corros. Sci. 70, 212 (2013).CrossRefGoogle Scholar
Asri, R.I.M., Harun, W.S.W., Samykano, M., Lah, N.A.C., Ghani, S.A.C., Tarlochan, F., and Raza, M.R.: Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng., C 77, 1261 (2017).CrossRefGoogle ScholarPubMed
Ryan, G., Pandit, A., and Apatsidis, D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27, 2651 (2006).CrossRefGoogle ScholarPubMed
Supplementary material: File

Galvão et al. supplementary material

Galvão et al. supplementary material 1

Download Galvão et al. supplementary material(File)
File 1.7 MB