Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T17:13:15.371Z Has data issue: false hasContentIssue false

Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine

Published online by Cambridge University Press:  01 January 2006

Hiten M. Kothari
Affiliation:
Department of Chemistry and Graduate Center of Materials Research, University of Missouri–Rolla, Rolla, Missouri 65409-1170
Elizabeth A. Kulp
Affiliation:
Department of Chemistry and Graduate Center of Materials Research, University of Missouri–Rolla, Rolla, Missouri 65409-1170
Steven J. Limmer
Affiliation:
Department of Chemistry and Graduate Center of Materials Research, University of Missouri–Rolla, Rolla, Missouri 65409-1170
Philippe Poizot
Affiliation:
Department of Chemistry and Graduate Center of Materials Research, University of Missouri–Rolla, Rolla, Missouri 65409-1170
Eric W. Bohannan
Affiliation:
Department of Chemistry and Graduate Center of Materials Research, University of Missouri–Rolla, Rolla, Missouri 65409-1170
Jay A. Switzer*
Affiliation:
Department of Chemistry and Graduate Center of Materials Research, University of Missouri–Rolla, Rolla, Missouri 65409-1170
*
a)Address all correspondence to this author. e-mail: jswitzer@umr.edu This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.
Get access

Abstract

In this paper, we demonstrate that films of magnetite, Fe3O4, can be deposited by the electrochemical reduction of a Fe(III)-triethanolamine complex in aqueous alkaline solution. The films were deposited with a columnar microstructure and a [100] preferred orientation on stainless steel substrates. In-plane electrical transport and magnetoresistance measurements were performed on the films after they were stripped off onto glass substrates. The resistance of the films was dependent on the oxygen partial pressure. We attribute the increase in resistance in O2 and the decrease in resistance in Ar to the oxidation and reduction of grain boundaries. The decrease in resistance in an Ar atmosphere exhibited first-order kinetics, with an activation energy of 0.2 eV. The temperature dependence of the resistance showed a linear dependence of log(R) versus T−1/2, consistent with tunneling across resistive grain boundaries. A room-temperature magnetoresistance of −6.5% was observed at a magnetic field of 9 T.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhang, Z. and Satpathy, S.: Electron-states, magnetism, and the Verwey transition in magnetite. Phys. Rev. B 44, 13319 (1991).CrossRefGoogle ScholarPubMed
2.Anisimov, V.I., Elfimov, I.S., Hamada, N. and Terakura, K.: Charge-ordered insulating state of Fe3O4 from first-principles electronic-structure calculations. Phys. Rev. B 54, 4387 (1996).CrossRefGoogle ScholarPubMed
3.Dedkov, Y.S., Rudiger, U. and Guntherodt, G.: Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys. Rev. B 65, 064417 (2002).CrossRefGoogle Scholar
4.Sorenson, T.A., Morton, S.A., Waddill, D.G. and Switzer, J.A.: Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. J. Am. Chem. Soc. 124, 7604 (2002).CrossRefGoogle ScholarPubMed
5.Hu, G. and Suzuki, Y.: Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 89, 276601 (2002).CrossRefGoogle ScholarPubMed
6.Li, X.W., Gupta, A., Xiao, G., Qian, W. and Dravid, V.P.: Fabrication and properties of heterojunction magnetite (Fe3O4) tunnel junctions. Appl. Phys. Lett. 73, 3282 (1998).CrossRefGoogle Scholar
7.Coey, J.M.D., Berkowitz, A.E., Balcells, L., Putris, F.F. and Parker, F.T.: Magnetoresistance of magnetite. Appl. Phys. Lett. 72, 734 (1998).CrossRefGoogle Scholar
8.Serrate, D., De Teresa, J.M., Algarabel, P.A., Fernandez-Pacheco, R., Galibert, J. and Ibarra, M.R.: Grain-boundary magnetoresistance up to 42 T in cold-pressed Fe3O4 nanopowders. J. Appl. Phys. 97, 084317 (2005).CrossRefGoogle Scholar
9.Kitamoto, Y., Nakayama, Y. and Abe, M.: Spin-dependent intergranular transport in magnetite films deposited by ferrite plating. J. Appl. Phys. 87, 7130 (2000).CrossRefGoogle Scholar
10.Eerenstein, W., Palstra, T.T.M., Saxena, S.S. and Hibma, T.: Spin-polarized transport across sharp antiferromagnetic boundaries. Phys. Rev. Lett. 88, 247204 (2002).CrossRefGoogle ScholarPubMed
11.Versluijs, J.J., Bari, M.A. and Coey, J.M.D.: Magnetoresistance of half-metallic oxide nanocontacts. Phys. Rev. Lett. 87, 026601 (2001).CrossRefGoogle Scholar
12.Gong, G.Q., Gupta, A., Xiao, G., Qian, W. and Dravid, V.P.: Magnetoresistance and magnetic properties of epitaxial magnetite thin films. Phys. Rev. B 56, 5096 (1997).CrossRefGoogle Scholar
13.Li, X.W., Gupta, A., Xiao, G. and Gong, G.Q.: Transport and magnetic properties of epitaxial and polycrystalline magnetite thin films. J. Appl. Phys. 83, 7049 (1998).CrossRefGoogle Scholar
14.Ogale, S.B., Ghosh, K., Sharma, R.P., Greene, R.L., Ramesh, R. and Venkatesan, T.: Magnetotransport anisotropy effects in epitaxial magnetite (Fe3O4) thin films. Phys. Rev. B 57, 7823 (1998).CrossRefGoogle Scholar
15.Tang, J., Wang, K-Y. and Zhou, W.: Magnetic properties of nanocrystalline Fe3O4 films. J. Appl. Phys. 89, 7690 (2001).CrossRefGoogle Scholar
16.Anderson, J.F., Kuhn, M., Diebold, U., Shaw, K., Stoyanov, P. and Lind, D.: Surface structure and morphology of Mg-segregated epitaxial Fe3O4(001) thin films on MgO(001). Phys. Rev. B 56, 9902 (1997).CrossRefGoogle Scholar
17.Shaw, K.A., Lochner, E. and Lind, D.M.: Interdiffusion study of magnesium in magnetite thin films grown on magnesium oxide (001) substrates. J. Appl. Phys. 87, 1727 (2000).CrossRefGoogle Scholar
18.Farrow, R.F.C., Rice, P.M., Toney, M.F., Marks, R.F., Hendstrom, J.A., Stephenson, R., Carey, M.J. and Kellock, A.J.: Nanoscale phase separation in Fe3O4(111) films on sapphire0001 and phase stability of Fe3O4(001) films on MgO(001) grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 93, 5626 (2003).CrossRefGoogle Scholar
19.Weiss, W. and Ritter, M.: Metal oxide heteroepitaxy: Stranski-Krastanov growth for iron oxides on Pt(111). Phys. Rev. B 59, 5201 (1999).CrossRefGoogle Scholar
20.Kurtz, R.L., Karunamuni, J. and Stockbauer, R.L.: Synthesis of epitaxial Fe3O4 films on Cu(001). Phys. Rev. B 60, 16342 (1999).CrossRefGoogle Scholar
21.Switzer, J.A., Shumsky, M.G. and Bohannan, E.W.: Electrodeposited ceramic single crystals. Science 284, 293 (1999).CrossRefGoogle ScholarPubMed
22.Bohannan, E.W., Shumsky, M.G. and Switzer, J.A.: Epitaxial electrodeposition of copper(I) oxide on single-crystal gold(100). Chem. Mater. 11, 2289 (1999).CrossRefGoogle Scholar
23.Nikiforov, M.P., Vertegel, A.A., Shumsky, M.G. and Switzer, J.A.: Epitaxial electrodeposition of Fe3O4 on single-crystal Au(111). Adv. Mater. 12, 1351 (2000).3.0.CO;2-#>CrossRefGoogle Scholar
24.Liu, R., Vertegel, A.A., Bohannan, E.W., Sorenson, T.A. and Switzer, J.A.: Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 13, 508 (2001).CrossRefGoogle Scholar
25.Switzer, J.A., Kothari, H.M. and Bohannan, E.W.: Thermodynamic to kinetic transition in epitaxial electrodeposition. J. Phys. Chem. B 106, 4027 (2002).CrossRefGoogle Scholar
26.Kothari, H.M., Vertegel, A.A., Bohannan, E.W. and Switzer, J.A.: Epitaxial electrodeposition of Pb–Tl–O superlattices on single-crystal Au(100). Chem. Mater. 14, 2750 (2002).CrossRefGoogle Scholar
27.Liu, R., Bohannan, E.W., Switzer, J.A., Oba, F. and Ernst, F.: Epitaxial electrodeposition of Cu2O films onto InP(001). Appl. Phys. Lett. 83, 1944 (2003).CrossRefGoogle Scholar
28.Nakanishi, S., Lu, G.T., Kothari, H.M., Bohannan, E.W. and Switzer, J.A.: Epitaxial electrodeposition of Prussian Blue thin films on single-crystal Au(110). J. Am. Chem. Soc. 125, 14998 (2003).CrossRefGoogle ScholarPubMed
29.Liu, R., Oba, F., Bohannan, E.W., Ernst, F. and Switzer, J.A.: Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP(001). Chem. Mater. 15, 4882 (2003).CrossRefGoogle Scholar
30.Switzer, J.A., Kothari, H.M., Poizot, P., Nakanishi, S. and Bohannan, E.W.: Enantiospecific electrodeposition of a chiral catalyst. Nature 425, 490 (2003).CrossRefGoogle ScholarPubMed
31.Bohannan, E.W., Kothari, H.M., Nicic, I.M. and Switzer, J.A.: Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111). J. Am. Chem. Soc. 126, 488 (2004).CrossRefGoogle ScholarPubMed
32.Liu, R., Kulp, E.A., Oba, F., Bohannan, E.W., Ernst, F. and Switzer, J.A.: Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111). Chem. Mater. 17, 725 (2005).CrossRefGoogle Scholar
33.Oba, F., Ernst, F., Yu, Y., Liu, R., Kothari, H.M. and Switzer, J.A.: Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates. J. Am. Ceram. Soc. 88, 253 (2005).CrossRefGoogle Scholar
34.Abe, M.: Ferrite plating: A chemical method preparing oxide magnetic films at 24–100 °C, and its applications. Electrochim. Acta 45, 3337 (2000).CrossRefGoogle Scholar
35.Abe, M. and Tamura, Y.: Ferrite-plating in aqueous solution: A new method for preparing magnetic thin film. Jpn. J. Appl. Phys. 22, L511 (1983).CrossRefGoogle Scholar
36.Carlier, D., Terrier, C., Arm, C. and Ansermet, J-Ph.: Preparation and magnetic properties of Fe3O4 nanostructures grown by electrodeposition. Electrochem. Solid State Lett. 8, C43 (2005).CrossRefGoogle Scholar
37.Sapieszko, R.S. and Matijevic, E.: Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. I. Iron oxides. J. Colloid Interface Sci. 74, 405 (1980).CrossRefGoogle Scholar
38.Ruby, C., Humbert, C. and Fusy, J.: Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surf. Interface Anal. 29, 377 (2000).3.0.CO;2-F>CrossRefGoogle Scholar
39.Krasnikov, S.A., Vinogradov, A.S., Hallmeier, K-H., Höhne, R., Ziese, M., Esquinazi, P., Chassé, T. and Szargan, R.: Oxidation effects in epitaxial Fe3O4 layers on MgO and MgAl2O4 substrates studied by x-ray absorption, fluorescence, and photoemission. Mater. Sci. Eng. B 109, 207 (2004).CrossRefGoogle Scholar
40.Saunders, J.P. and Gallagher, P.K.: Thermomagnetometric evidence of γ–Fe2O3 as an intermediate in the oxidation of magnetite. Thermochim. Acta 406, 241 (2003).CrossRefGoogle Scholar
41.Gallagher, K.J., Feitknecht, W. and Mannweler, U.: Mechanism of oxidation of magnetite to γ–Fe2O3. Nature 217, 1118 (1968).CrossRefGoogle Scholar
42.Sidhu, P.S., Gilkes, R.J. and Posner, A.M.: Mechanism of the low temperature oxidation of synthetic magnetites. J. Inorg. Nucl. Chem. 39, 1953 (1977).CrossRefGoogle Scholar
43.Tang, J., Myers, M., Bosnick, K.A. and Brus, L.E.: Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B 107, 7501 (2003).CrossRefGoogle Scholar
44.Sheng, P., Abeles, B. and Arie, Y.: Hopping conductivity in granular metals. Phys. Rev. Lett. 31, 44 (1973).CrossRefGoogle Scholar
45.Liu, H., Jiang, E.Y., Bai, H.L., Zheng, R.K., Wei, H.L. and Zhang, X.X.: Large room-temperature spin-dependent tunneling magnetoresistance in polycrystalline Fe3O4 films. Appl. Phys. Lett. 83, 3531 (2003).CrossRefGoogle Scholar
46.Eerenstein, W., Palstra, T.T.M., Hibma, T. and Celotto, S.: Origin of the increased resistivity in epitaxial Fe3O4 films. Phys. Rev. B 66, 201101 (R) (2002).CrossRefGoogle Scholar