Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T15:01:03.682Z Has data issue: false hasContentIssue false

Electrically reduced graphene oxide for photovoltaic application

Published online by Cambridge University Press:  28 February 2019

Arun Singh*
Affiliation:
Advanced Electronic and Nano-Materials Laboratory, Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025, India
Neeraj Sharma
Affiliation:
Advanced Electronic and Nano-Materials Laboratory, Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025, India
Mohd. Arif
Affiliation:
Advanced Electronic and Nano-Materials Laboratory, Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025, India
Ram S. Katiyar
Affiliation:
SPECLAB, Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 90036, USA
*
a)Address all correspondence to this author. e-mail: arunsingh07@gmail.com
Get access

Abstract

We report Electrically reduced graphene oxide (GO) and n-type Si heterostructure junction-based photovoltaic cell. The transition of the insulating properties of GO to that of semi-conducting was achieved by applying electric voltages using 5, 10, and 15 V biasing. The photovoltaic device IV characteristics corresponding to the increasing (5–15 V) reduction voltages, obtained on exposure of 25 mW/cm2 visible light, showed approximately same fill factor with increased efficiency. The maximum efficiency of 1.12% was observed under ultraviolet light exposure for photovoltaic cell consisting GO reduced using 15 V reduction voltage. GO was synthesized using the modified Hummers’ technique and characterized by X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The GO characteristic XRD peak corresponding to plane (001) was observed at 9.16°. The UV-Vis spectrum for GO displayed an absorption peak at 228.5 nm, and the corresponding Tauc plot analysis provided a band gap of 4.74 eV. The FTIR analysis showed presence of C=O (1713 cm−1), C=C (1627 cm−1), C–OH (1418 cm−1), C–O–C (1252 cm−1), C–O (1030 cm−1), and C–H (827 cm−1) functional groups in GO.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maiti, R., Midya, A., Narayana, C., and Ray, S.K.: Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation. Nanotechnology 25, 495704 (2014).10.1088/0957-4484/25/49/495704CrossRefGoogle ScholarPubMed
Ji, S., Min, B.K., Kim, S.K., Myung, S., Kang, M., Shin, H.S., Song, W., Heo, J., Lim, J., An, K.S., Lee, I.Y., and Lee, S.S.: Work function engineering of graphene oxide via covalent functionalization for organic field-effect transistors. Appl. Surf. Sci. 419, 252 (2017).10.1016/j.apsusc.2017.05.028CrossRefGoogle Scholar
Son, Y.W., Cohen, M.L., and Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 1 (2006).10.1103/PhysRevLett.97.216803CrossRefGoogle ScholarPubMed
Lee, S., Bong, S., Ha, J., Kwak, M., Park, S.K., and Piao, Y.: Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals. Sens. Actuators, B 215, 62 (2015).10.1016/j.snb.2015.03.032CrossRefGoogle Scholar
Song, Y., Fang, W., Brenes, R., and Kong, J.: Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today 10, 681 (2015).10.1016/j.nantod.2015.11.005CrossRefGoogle Scholar
Mensah, B., Kumar, D., Lim, D.K., Kim, S.G., Jeong, B.H., and Nah, C.: Preparation and properties of acrylonitrile-butadiene rubber-graphene nanocomposites. J. Appl. Polym. Sci. 132, 13 (2015).10.1002/app.42457CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).10.1126/science.1102896CrossRefGoogle ScholarPubMed
Zhu, S.E., Krishna Ghatkesar, M., Zhang, C., and Janssen, G.C.A.M.: Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102, 111 (2013).10.1063/1.4802799CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).10.1021/nl801827vCrossRefGoogle ScholarPubMed
Wahab, H.S., Ali, S.H., and Abdul, H.A.M.: Synthesis and characterization of graphene by Raman spectroscopy. J. Mater. Sci. Appl. 1, 130 (2015).Google Scholar
Karthika, P.: Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanosci. Lett. 02, 59 (2012).10.4236/snl.2012.24011CrossRefGoogle Scholar
Liu, F., Chu, X., Dong, Y., Zhang, W., Sun, W., and Shen, L.: Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators, B 188, 469 (2013).10.1016/j.snb.2013.06.065CrossRefGoogle Scholar
Storm, M.M., Overgaard, M., Younesi, R., Reeler, N.E.A., Vosch, T., Nielsen, U.G., Edstro¨m, K., and Norby, P.: Reduced graphene oxide for Li-air batteries: The effect of oxidation time and reduction conditions for graphene oxide. Carbon 85, 233 (2015).10.1016/j.carbon.2014.12.104CrossRefGoogle Scholar
Dubovik, E., Fridkin, V., and Dimos, D.: The bulk photovoltaic effect in ferroelectric Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 8, 285 (1995).10.1080/10584589508219662CrossRefGoogle Scholar
Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonson, M., Adamson, D.H., Prud’homme, R.K., Car, R., Seville, D.A., and Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535 (2006).10.1021/jp060936fCrossRefGoogle ScholarPubMed
Chua, C.K. and Pumera, M.: Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291 (2014).10.1039/C3CS60303BCrossRefGoogle ScholarPubMed
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).10.1016/j.carbon.2007.02.034CrossRefGoogle Scholar
Yao, B.P., Chen, P., Jiang, L., Zhao, H., Zhu, H., and Zhou, D.: Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. Adv. Mater. 22, 5008 (2010).10.1002/adma.201002312CrossRefGoogle ScholarPubMed
Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., and Chhowalla, M.: Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768 (2009).10.1021/jp9051402CrossRefGoogle Scholar
Blanton, T. and Majumdar, D.: Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. JCPDS-International Cent. Diffr. Data 2, 116 (2013).Google Scholar
Gupta, V., Sharma, N., Singh, U., Arif, M., and Singh, A.: Higher oxidation level in graphene oxide. Optik 143, 115 (2017).10.1016/j.ijleo.2017.05.100CrossRefGoogle Scholar
Arif, M., Sanger, A., Shkir, M., Singh, A., and Katiyar, R.S.: Influence of interparticle interaction on the structural, optical and magnetic properties of NiO nanoparticles. Phys. B 552, 88 (2019).10.1016/j.physb.2018.09.023CrossRefGoogle Scholar
Arif, M., Monga, S., Sanger, A., Vilarinho, P.M., and Singh, A.: Investigation of structural, optical and vibrational properties of highly oriented ZnO thin film. Vacuum 155, 662 (2018).10.1016/j.vacuum.2018.04.052CrossRefGoogle Scholar
Arif, M., Khan, Z.R., Gupta, V., and Singh, A.: Effect of substrates temperature on structural and optical properties of thermally evaporated CdS nanocrystalline thin films. Indian J. Pure Appl. Phys. 52, 699 (2014).Google Scholar
Shahriary, L. and Athawale, A.A.: Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 02, 58 (2014).Google Scholar
Andonovic, B., Grozdanov, A., Paunović, P., and Dimitrov, A.T.: X-ray diffraction analysis on layers in graphene samples obtained by electrolysis in molten salts: A new perspective. Micro Nano Lett. 10, 683 (2015).10.1049/mnl.2015.0325CrossRefGoogle Scholar
Luo, Z., Lu, Y., Somers, L.A., and Johnson, A.T.C.: High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131, 898 (2009).10.1021/ja807934nCrossRefGoogle ScholarPubMed
Arif, M., Sanger, A., Vilarinho, P.M., and Singh, A.: Effect of annealing temperature on structural and optical properties of sol–gel-derived ZnO thin films. J. Electron. Mater. 47, 3678 (2018).10.1007/s11664-018-6217-6CrossRefGoogle Scholar
Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Yahia, I.S., Maidur, S.R., Shankaragouda, P., and Alfaify, S.: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).CrossRefGoogle Scholar
Ganesh, V., Haritha, L., Anis, M., Shkir, M., Yahia, I.S., Singh, A., and Alfaify, S.: Structural, morphological, optical and third order nonlinear optical response of spin-coated NiO thin films: An effect of N doping. Solid State Sci. 86, 98 (2018).10.1016/j.solidstatesciences.2018.10.009CrossRefGoogle Scholar
Chauhan, A.K.S., and Sreenivas, K.: TG-DTA and FT-IR studies on sol–gel derived Pb1−xCaxTiO3. Ferroelectrics 324, 77 (2005).10.1080/00150190500324659CrossRefGoogle Scholar
Viezbicke, B.D., Patel, S., Davis, B.E., and Birnie, D.P.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700 (2015).10.1002/pssb.201552007CrossRefGoogle Scholar
Sudesh, , Kumar, N., Das, S., Bernhard, C., and Varma, G.D.: Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26, 095008 (2013).10.1088/0953-2048/26/9/095008CrossRefGoogle Scholar
Yamaguchi, H., Murakami, K., Eda, G., Fujita, T., Guan, P., Wang, W., Gong, C., Boisse, J., Miller, S., Acik, M., Cho, K., Chabal, Y.J., Chen, M., Wakaya, F., Takai, M., and Chhowalla, M.: Field emission from atomically thin edges of reduced graphene oxide. ACS Nano 5, 4945 (2011).10.1021/nn201043aCrossRefGoogle ScholarPubMed
Mativetsky, M., Liscio, A., Treossi, E., Orgiu, E., Zanelli, A., Samorì, P., and Palermo, V.: Graphene transistors via in situ voltage-induced reduction of graphene-oxide under ambient conditions. J. Am. Chem. Soc. 133, 14320 (2011).CrossRefGoogle ScholarPubMed
Shen, J., Yan, B., Shi, M., Ma, H., Li, N., and Ye, M.: One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21, 3415 (2011).10.1039/c0jm03542dCrossRefGoogle Scholar