Skip to main content Accessibility help

Electrically reduced graphene oxide for photovoltaic application

  • Arun Singh (a1), Neeraj Sharma (a1), Mohd. Arif (a1) and Ram S. Katiyar (a2)


We report Electrically reduced graphene oxide (GO) and n-type Si heterostructure junction-based photovoltaic cell. The transition of the insulating properties of GO to that of semi-conducting was achieved by applying electric voltages using 5, 10, and 15 V biasing. The photovoltaic device IV characteristics corresponding to the increasing (5–15 V) reduction voltages, obtained on exposure of 25 mW/cm2 visible light, showed approximately same fill factor with increased efficiency. The maximum efficiency of 1.12% was observed under ultraviolet light exposure for photovoltaic cell consisting GO reduced using 15 V reduction voltage. GO was synthesized using the modified Hummers’ technique and characterized by X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The GO characteristic XRD peak corresponding to plane (001) was observed at 9.16°. The UV-Vis spectrum for GO displayed an absorption peak at 228.5 nm, and the corresponding Tauc plot analysis provided a band gap of 4.74 eV. The FTIR analysis showed presence of C=O (1713 cm−1), C=C (1627 cm−1), C–OH (1418 cm−1), C–O–C (1252 cm−1), C–O (1030 cm−1), and C–H (827 cm−1) functional groups in GO.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Maiti, R., Midya, A., Narayana, C., and Ray, S.K.: Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation. Nanotechnology 25, 495704 (2014).10.1088/0957-4484/25/49/495704
2.Ji, S., Min, B.K., Kim, S.K., Myung, S., Kang, M., Shin, H.S., Song, W., Heo, J., Lim, J., An, K.S., Lee, I.Y., and Lee, S.S.: Work function engineering of graphene oxide via covalent functionalization for organic field-effect transistors. Appl. Surf. Sci. 419, 252 (2017).10.1016/j.apsusc.2017.05.028
3.Son, Y.W., Cohen, M.L., and Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 1 (2006).10.1103/PhysRevLett.97.216803
4.Lee, S., Bong, S., Ha, J., Kwak, M., Park, S.K., and Piao, Y.: Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals. Sens. Actuators, B 215, 62 (2015).10.1016/j.snb.2015.03.032
5.Song, Y., Fang, W., Brenes, R., and Kong, J.: Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today 10, 681 (2015).10.1016/j.nantod.2015.11.005
6.Mensah, B., Kumar, D., Lim, D.K., Kim, S.G., Jeong, B.H., and Nah, C.: Preparation and properties of acrylonitrile-butadiene rubber-graphene nanocomposites. J. Appl. Polym. Sci. 132, 13 (2015).10.1002/app.42457
7.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).10.1126/science.1102896
8.Zhu, S.E., Krishna Ghatkesar, M., Zhang, C., and Janssen, G.C.A.M.: Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102, 111 (2013).10.1063/1.4802799
9.Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).10.1021/nl801827v
10.Wahab, H.S., Ali, S.H., and Abdul, H.A.M.: Synthesis and characterization of graphene by Raman spectroscopy. J. Mater. Sci. Appl. 1, 130 (2015).
11.Karthika, P.: Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanosci. Lett. 02, 59 (2012).10.4236/snl.2012.24011
12.Liu, F., Chu, X., Dong, Y., Zhang, W., Sun, W., and Shen, L.: Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators, B 188, 469 (2013).10.1016/j.snb.2013.06.065
13.Storm, M.M., Overgaard, M., Younesi, R., Reeler, N.E.A., Vosch, T., Nielsen, U.G., Edstro¨m, K., and Norby, P.: Reduced graphene oxide for Li-air batteries: The effect of oxidation time and reduction conditions for graphene oxide. Carbon 85, 233 (2015).10.1016/j.carbon.2014.12.104
14.Dubovik, E., Fridkin, V., and Dimos, D.: The bulk photovoltaic effect in ferroelectric Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 8, 285 (1995).10.1080/10584589508219662
15.Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonson, M., Adamson, D.H., Prud’homme, R.K., Car, R., Seville, D.A., and Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535 (2006).10.1021/jp060936f
16.Chua, C.K. and Pumera, M.: Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291 (2014).10.1039/C3CS60303B
17.Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).10.1016/j.carbon.2007.02.034
18.Yao, B.P., Chen, P., Jiang, L., Zhao, H., Zhu, H., and Zhou, D.: Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. Adv. Mater. 22, 5008 (2010).10.1002/adma.201002312
19.Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., and Chhowalla, M.: Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768 (2009).10.1021/jp9051402
20.Blanton, T. and Majumdar, D.: Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. JCPDS-International Cent. Diffr. Data 2, 116 (2013).
21.Gupta, V., Sharma, N., Singh, U., Arif, M., and Singh, A.: Higher oxidation level in graphene oxide. Optik 143, 115 (2017).10.1016/j.ijleo.2017.05.100
22.Arif, M., Sanger, A., Shkir, M., Singh, A., and Katiyar, R.S.: Influence of interparticle interaction on the structural, optical and magnetic properties of NiO nanoparticles. Phys. B 552, 88 (2019).10.1016/j.physb.2018.09.023
23.Arif, M., Monga, S., Sanger, A., Vilarinho, P.M., and Singh, A.: Investigation of structural, optical and vibrational properties of highly oriented ZnO thin film. Vacuum 155, 662 (2018).10.1016/j.vacuum.2018.04.052
24.Arif, M., Khan, Z.R., Gupta, V., and Singh, A.: Effect of substrates temperature on structural and optical properties of thermally evaporated CdS nanocrystalline thin films. Indian J. Pure Appl. Phys. 52, 699 (2014).
25.Shahriary, L. and Athawale, A.A.: Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 02, 58 (2014).
26.Andonovic, B., Grozdanov, A., Paunović, P., and Dimitrov, A.T.: X-ray diffraction analysis on layers in graphene samples obtained by electrolysis in molten salts: A new perspective. Micro Nano Lett. 10, 683 (2015).10.1049/mnl.2015.0325
27.Luo, Z., Lu, Y., Somers, L.A., and Johnson, A.T.C.: High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131, 898 (2009).10.1021/ja807934n
28.Arif, M., Sanger, A., Vilarinho, P.M., and Singh, A.: Effect of annealing temperature on structural and optical properties of sol–gel-derived ZnO thin films. J. Electron. Mater. 47, 3678 (2018).10.1007/s11664-018-6217-6
29.Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Yahia, I.S., Maidur, S.R., Shankaragouda, P., and Alfaify, S.: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).
30.Ganesh, V., Haritha, L., Anis, M., Shkir, M., Yahia, I.S., Singh, A., and Alfaify, S.: Structural, morphological, optical and third order nonlinear optical response of spin-coated NiO thin films: An effect of N doping. Solid State Sci. 86, 98 (2018).10.1016/j.solidstatesciences.2018.10.009
31.Chauhan, A.K.S., and Sreenivas, K.: TG-DTA and FT-IR studies on sol–gel derived Pb1−xCaxTiO3. Ferroelectrics 324, 77 (2005).10.1080/00150190500324659
32.Viezbicke, B.D., Patel, S., Davis, B.E., and Birnie, D.P.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700 (2015).10.1002/pssb.201552007
33.Sudesh, , Kumar, N., Das, S., Bernhard, C., and Varma, G.D.: Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26, 095008 (2013).10.1088/0953-2048/26/9/095008
34.Yamaguchi, H., Murakami, K., Eda, G., Fujita, T., Guan, P., Wang, W., Gong, C., Boisse, J., Miller, S., Acik, M., Cho, K., Chabal, Y.J., Chen, M., Wakaya, F., Takai, M., and Chhowalla, M.: Field emission from atomically thin edges of reduced graphene oxide. ACS Nano 5, 4945 (2011).10.1021/nn201043a
35.Mativetsky, M., Liscio, A., Treossi, E., Orgiu, E., Zanelli, A., Samorì, P., and Palermo, V.: Graphene transistors via in situ voltage-induced reduction of graphene-oxide under ambient conditions. J. Am. Chem. Soc. 133, 14320 (2011).
36.Shen, J., Yan, B., Shi, M., Ma, H., Li, N., and Ye, M.: One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21, 3415 (2011).10.1039/c0jm03542d


Electrically reduced graphene oxide for photovoltaic application

  • Arun Singh (a1), Neeraj Sharma (a1), Mohd. Arif (a1) and Ram S. Katiyar (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed