Skip to main content Accessibility help

Electrically controllable position-controlled color centers created in SiC pn junction diode by proton beam writing

  • Yuichi Yamazaki (a1), Yoji Chiba (a2), Takahiro Makino (a1), Shin-Ichiro Sato (a1), Naoto Yamada (a1), Takahiro Satoh (a1), Yasuto Hijikata (a3), Kazutoshi Kojima (a4), Sang-Yun Lee (a5) and Takeshi Ohshima (a1)...


Single photon sources (SPS) are an important building block for realizing quantum technologies for computing, communication, and sensing. For industrialization, electrically controllable color centers acting as SPS are required. We have demonstrated the creation of electrically controllable silicon vacancies (VSis) in the SiC pn junction diode fabricated by proton beam writing (PBW). PBW was successfully used to introduce electrically controllable VSi without degradation of the diode performance. The dependence of the electroluminescence (EL) and photoluminescence (PL) intensities from VSi on H+ fluence revealed that the emission efficiency of EL is less than that of PL. For EL, the supply of carriers (electrons and/or holes) was restricted due to the resistive region around each VSi introduced by PBW. The results suggest that further improvement in the VSi creation process without defects acting as majority carrier removal centers (highly resistive region) and nonradiative centers by optimization of PBW conditions are key points to realize highly sensitive quantum sensors using VSi.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This paper has been selected as an Invited Feature Paper.



Hide All
1.The IBM quantum experience: Available at: (accessed May 22, 2018).
2.Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., and Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018).
3.Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., and Monroe, C.: Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).
4.Ichimura, K.: A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode. Opt. Commun. 196, 119 (2001).
5.Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., and Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005).
6.Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P.R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., and Wrachtrup, J.: Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648 (2008).
7.Waldherr, G., Wang, Y., Zaiser, S., Jamali, M., Schulte-Herbrüggen, T., Abe, H., Ohshima, T., Isoya, J., Du, J.F., Neumann, P., and Wrachtrup, J.: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204 (2014).
8.Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., and Wrachtrup, J.: Electric-field sensing using single diamond spins. Nat. Phys. 7, 459 (2011).
9.Tetienne, J.P., Dontschuk, N., Broadway, D.A., Stacey, A., Simpson, D.A., and Hollenberg, L.C.L.: Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).
10.Fuchs, F., Stender, B., Trupke, M., Simin, D., Pflaum, J., Dyakonov, V., and Astakhov, G.V.: Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015).
11.Widmann, M., Lee, S.Y., Rendler, T., Son, N.T., Fedder, H., Paik, S., Yang, L.P., Zhao, N., Yang, S., Booker, I., Denisenko, A., Jamali, M., Momenzadeh, S.A., Gerhardt, I., Ohshima, T., Gali, A., Janzén, E., and Wrachtrup, J.: Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164 (2015).
12.Castelletto, S., Johnson, B.C., Ivády, V., Stavrias, N., Umeda, T., Gali, A., and Ohshima, T.: A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151 (2014).
13.Christle, D.J., Falk, A.L., Andrich, P., Klimov, P.V., Ul Hassan, J., Son, N.T., Janzén, E., Ohshima, T., and Awschalom, D.D.: Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160 (2015). las Casas, C.F., Christle, D.J., Hassan, J.U., Ohshima, T., Son, N.T., and Awschalom, D.D.: Stark tuning and electrical charge state control of single divacancies in silicon carbide. Appl. Phys. Lett. 111, 262403 (2017).
15.Lohrmann, A., Iwamoto, N., Bodrog, Z., Castelletto, S., Ohshima, T., Karle, T.J., Gali, A., Prawer, S., McCallum, J.C., and Johnson, B.C.: Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015).
16.Lohrmann, A., Castelletto, S., Klein, J.R., Ohshima, T., Bosi, M., Negri, M., Lau, D.W.M., Gibson, B.C., Prawer, S., McCallum, J.C., and Johnson, B.C.: Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation. Appl. Phys. Lett. 108, 021107 (2016).
17.Abe, Y., Umeda, T., Okamoto, M., Kosugi, R., Harada, S., Haruyama, M., Kada, W., Hanaizumi, O., Onoda, S., and Ohshima, T.: Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 112, 031105 (2018).
18.Baranov, P.G., Bundakova, A.P., and Soltamova, A.A.: Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).
19.Simin, D., Soltamov, V.A., Poshakinskiy, A.V., Anisimov, A.N., Babunts, R.A., Tolmachev, D.O., Mokhov, E.N., Trupke, M., Tarasenko, S.A., Sperlich, A., Baranov, P.G., Dyakonov, V., and Astakhov, G.V.: All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 031014 (2016).
20.Niethammer, M., Widmann, M., Lee, S-Y., Stenberg, P., Kordina, O., Ohshima, T., Son, N.T., Janzén, E., and Wrachtrup, J.: Vector magnetometry using silicon vacancies in 4H-SiC under ambient conditions. Phys. Rev. Appl. 6, 034001 (2016).
21.Cochrane, C.J., Blacksberg, J., Anders, M.A., and Lenahan, P.M.: Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci. Rep. 6, 37077 (2016).
22.Anisimov, A.N., Simin, D., Soltamov, V.A., Lebedev, S.P., Baranov, P.G., Astakhov, G.V., and Dyakonov, V.: Optical thermometry based on level anticrossing in silicon carbide. Sci. Rep. 6, 33301 (2016).
23.Fuchs, F., Soltamov, V.A., Väth, S., Baranov, P.G., Mokhov, E.N., Astakhov, G.V., and Dyakonov, V.: Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013).
24.Kraus, H., Simin, D., Kasper, C., Suda, Y., Kawabata, S., Kada, W., Honda, T., Hijikata, Y., Ohshima, T., Dyakonov, V., and Astakhov, G.V.: Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide. Nano Lett. 17, 2865 (2017).
25.Ohshima, T., Honda, T., Onoda, S., Makino, T., Haruyama, M., Kamiya, T., Satoh, T., Hijikata, Y., Kada, W., Hanaizumi, O., Lohrmann, A., Klein, J.R., Johnson, B.C., McCallum, J.C., Castelletto, S., Gibson, B.C., Kraus, H., Dyakonov, V., and Astakhov, G.V.: Creation and functionalization of defects in SiC by proton beam writing. Mater. Sci. Forum 897, 233 (2017).
26.SRIM—The stopping and range of ions in matter: Available at: (accessed May 22, 2018).
27.Kato, H., Wolfer, M., Schreyvogel, C., Kunzer, M., Sebert, W.M., Obloh, H., Yamasaki, S., and Nebel, C.: Tunable light emission from nitrogen-vacancy centers in single crystal diamond PIN diodes. Appl. Phys. Lett. 102, 151101 (2013).
28.Patrick, L. and Choyke, W.J.: Photoluminescence of radiation defects in ion-implanted 6H SiC. Phys. Rev. B 5, 3253 (1972).
29.Lohrmann, A., Pezzagna, S., Dobrinets, I., Spinicelli, P., Jacques, V., Roch, J-F., Meijer, J., and Zaitsev, A.M.: Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 99, 251106 (2011).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed