Skip to main content Accessibility help
×
Home

Electrical characterization of quasi fullerene junctions formed with different metallic electrodes

  • Rupan Preet Kaur (a1), Ravinder Singh Sawhney (a1) and Derick Engles (a1)

Abstract

We calculate, compare, and discuss the charge transport properties through quasi fullerene C40 obtained in three different electrode–C40–electrode testbeds by employing density functional theory combined with nonequilibrium Green's function, to predict the electronic structure of molecular junctions formed from copper, silver, and gold electrodes. We investigate various metrics such as chemical potential of electrodes, density of states, transmission spectra, Mulliken population, and molecular projected self-consistent Hamiltonian eigen states to develop a novel insight about the varying transport phenomenon as the metallic part of the scattering region is modified. We conclude that all the junctions exhibit strong metallic character displaying ballistic conductance of order of more than G 0 accompanied by pronounced ripples in their conductance spectrum and small rectifying behavior in their current spectrum. This rectifying behavior is found to stem from the asymmetric shifting of orbital energies with changing bias voltage due to change in relative charge transfer through central molecule C40.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: bhullar.rupan@gmail.com

References

Hide All
1. Joachim, C., Gimzewski, J.K., and Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541548 (2000).
2. Nitzan, A. and Ratner, M.A.: Electron transport in molecular wire junctions. Science 300, 13841389 (2003).
3. Elbing, M., Ochs, R., Koentopp, M., Fischer, M., Von Hänisch, C., Weigend, F., Evers, F., Weber, H.B., and Mayor, M.: A single-molecule diode. Proc. Natl. Acad. Sci. U. S. A. 102, 8815 (2005).
4. Yu, L., Keane, Z., Ciszek, J., Cheng, L., Tour, J., Baruah, T., Pederson, M., and Natelson, D.: Kondo resonances and anomalous gate dependence in the electrical conductivity of single-molecule transistors. Phys. Rev. Lett. 95, 256803 (2005).
5. Chen, F., Li, X., Hihath, J., Huang, Z., and Tao, N.J.: Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 1587415881 (2006).
6. Martin, C.A., Ding, D., Sørensen, J.K., Bjørnholm, T., van Ruitenbeek, J.M., and van der Zant, H.S.J.: Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 1319813199 (2008).
7. Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., and Steigerwald, M.L.: Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458462 (2006).
8. Yanson, A.I., Bollinger, G.R., Van den Brom, H.E., Agrait, N., and Van Ruitenbeek, J.M.: Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783785 (1998).
9. Ohnishi, H., Kondo, Y., and Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780783 (1998).
10. Smit, R.H.M., Untiedt, C., Yanson, A.I., and van Ruitenbeek, J.M.: Common origin for surface reconstruction and the formation of chains of metal atoms. Phys. Rev. Lett. 87, 266102 (2001).
11. Csonka, S.z., Halbritter, A., and Mihály, G.: Pulling gold nanowires with a hydrogen clamp: Strong interactions of hydrogen molecules with gold nanojunctions. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 075405 (2006).
12. Kiguchi, M., Stadler, R., Kristensen, I.S., Djukic, D., and van Ruitenbeek, J.M.: Evidence for a single hydrogen molecule connected by an atomic chain. Phys. Rev. Lett. 98, 146802 (2007).
13. Tao, J., Zhao, J., Tang, C., Kang, Y., and Li, Y.: Mechanism study of self-organized TiO2 nanotube arrays by anodization. New J. Chem. 32, 21642168 (2008).
14. Kiguchi, M., Hashimoto, K., Ono, Y., Taketsugu, T., and Murakoshi, K.: Formation of the Pd atomic chain in hydrogen atmosphere. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 195401 (2010).
15. Makk, P., Balogh, Z., Csonka, S., and Halbritter, A.: Pulling platinum atomic chains by carbon monoxide molecules. Nanoscale 4, 47394745 (2012).
16. Wu, S., González, M.T., Huber, R., Grunder, S., Mayor, M., Schönenberger, C., and Calame, M.: Molecular junctions based on aromatic coupling. Nat. Nanotechnol. 3, 569574 (2008).
17. Xiao, X., Xu, B., and Tao, N.J.: Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267271 (2004).
18. Kim, Y., Hellmuth, T.J., Burkle, M., Pauly, F., and Scheer, E.: Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy. ACS Nano 5, 41044111 (2011).
19. Kim, Y., Song, H., Strigl, F., Pernau, H.F., Lee, T., and Scheer, E.: Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011).
20. Cheng, Z-L., Skouta, R., Vazquez, H., Widawsky, J.R., Schneebeli, S., Chen, W., Hybertsen, M.S., Breslow, R., and Venkataraman, L.: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353357 (2011).
21. Dorogi, M., Gomez, J., Osifchin, R., Andres, R.P., and Reifenberger, R.: Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B: Condens. Matter Mater. Phys. 52, 9071 (1995).
22. Andres, R.P., Datta, S., Dorogi, M., Gomez, J., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W., Osifchin, R.F., Reifenberger, R., Samanta, M.P., and Tian, W.: Room temperature Coulomb blockade and Coulomb staircase from self-assembled nanostructures. J. Vac. Sci. Technol., A 14, 1178 (1996).
23. Andres, R.P., Bein, T., Dorogi, M., Feng, S., Henderson, J.I., Kubiak, C.P., Mahoney, W., Osifchin, R.G., and Reifenberger, R.: “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272, 1323 (1996).
24. Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, L. II, Allara, D.L., Tour, J.M., and Weiss, P.S.: Are single molecular wires conducting? Science 271, 1705 (1996).
25. Metzger, R.M., Chen, B.C., Hopfner, U., and Lakshmikantham, M.V.: Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455 (1997).
26. Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103, 38033834 (2003).
27. Hong, S., Bielefeld, J., Andres, R.P., and Reifenberger, R.: Nanowires, Serena, P. and Garcia, N. eds.; Kluwer Academic: Dodrecht, 1997; pp. 351372.
28. Cuberes, M.T., Schlittler, R.R., Jung, T.A., Schaumburg, K., and Gimzewski, J.K.: A scanning tunneling microscopy investigation of 4,4′-dimethylbianthrone molecules adsorbed on Cu(111). Surf. Sci. 383, 37 (1997).
29. Dhirani, A., Lin, P-H., Guyot-Sionnest, P., Zehner, R.W., and Sita, L.R.: Self-assembled molecular rectifiers. J. Chem. Phys. 106, 5249 (1997).
30. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., and Tour, J.M.: Conductance of a molecular junction. Science 278, 252 (1997).
31. Chen, J., Calvet, L.C., Reed, M.A., Carr, D.W., Grubisha, D.S., and Bennett, D.W.: Electronic transport through metal–1,4-phenylene diisocyanide–metal junctions. Chem. Phys. Lett. 313, 741 (1999).
32. Kergueris, C., Bourgoin, J-P., Palacin, S., Esteve, D., Urbina, C., Magoga, M., and Joachim, C.: Electron transport through a metal–molecule–metal junction. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 12505 (1999).
33. Kergueris, C., Bourgoin, J-P., and Palacin, S.: Experimental investigations of the electrical transport properties of dodecanethiol and α,ω bisthiolterthiophene molecules embedded in metal–molecule–metal junctions. Nanotechnology 10, 8 (1999).
34. Wold, D.J. and Frisbie, C.D.: Formation of metal–molecule–metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970 (2000).
35. Andres, R.P., Datta, S., Janes, D.B., Kubiak, C.P., and Reifenberger, R.: Handbook of Nanostructured Materials and Nanotechnology, Vol. 3, Nalwa, H.S. ed.; Academic Press: New York, 2000; pp. 179231.
36. Mujica, V., Kemp, M., Roitberg, A., and Ratner, M.A.: Current–voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification. J. Chem. Phys. 104, 7296 (1996).
37. Kemp, M., Roitberg, A., Mujica, V., Wanta, T., and Ratner, M.A.: Molecular wires: Extended coupling and disorder effects. J. Phys. Chem. 100, 8349 (1996).
38. Samanta, M.P., Tian, W., Datta, S., Henderson, J.I., and Kubiak, C.P.: Electronic conduction through organic molecules. Phys. Rev. B: Condens. Matter Mater. Phys. 53, 7626 (1996).
39. Joachim, C. and Vinuesa, J.F.: Length dependence of the electronic transparence (conductance) of a molecular wire. Europhys. Lett. 33, 635 (1996).
40. Boulas, C., Davidovits, J.V., Rondelez, F., and Vuillaume, D.: Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 76, 4797 (1996).
41. Datta, S., Tian, W., Hong, S., Reifenberger, R., Henderson, J.I., and Kubiak, C.P.: Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530 (1997).
42. Tian, W., Datta, S., Hong, S., Reifenberger, R., and Henderson, J.I.: Resistance of molecular nanostructures. Phys. E 1, 304 (1997).
43. Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J., and Kubiak, C.: Conductance spectra of molecular wires. J. Chem. Phys. 109, 2874 (1998).
44. Ratner, M.A., Davis, B., Kemp, M., Mujica, V., Roitberg, A., and Yaliraki, S.: Molecular Electronics: Science and Technology, Aviram, A. and Ratner, M. eds.; New York Academy of Sciences: New York, 1998; p. 852.
45. Emberly, E. and Kirczenow, G.: Electrical conductance of nanowires. Nanotechnology 10, 285 (1999).
46. Di Ventra, M., Pantelides, S.T., and Lang, N.D.: First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979 (2000).
47. Durig, U., Zuger, O., Michel, B., Haussling, L., and Ringsdorf, H.: Electronic and mechanical characterization of self-assembled alkanethiol monolayers by scanning tunneling microscopy combined with interaction-force-gradient sensing. Phys. Rev. B: Condens. Matter Mater. Phys. 48, 1711 (1993).
48. Reed, M.A., Randall, J.N., Aggarwal, R.J., Matyi, R.J., Moore, T.M., and Wetsel, A.E.: Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys. Rev. Lett. 60, 535 (1988).
49. Meirav, U., Kastner, M., and Wind, S.: Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65, 771 (1990).
50. Dellow, M.W., Beton, P.H., Henini, M., Main, P.C., Eaves, L., Beaumont, S.P., and Wilkinson, C.D.W.: Gated resonant tunnelling devices. Electron. Lett. 27, 134 (1991).
51. Kouwenhoven, L.P., van der Vaart, N.C., Johnson, A.T., Kool, W., Harmans, C.J.P.M., Williamson, J.G., Staring, A.A.M., and Foxon, C.T.: Single electron charging effects in semiconductor quantum dots. Z. Phys. B: Condens. Matter 85, 367 (1991).
52. Kouwenhoven, L.P., Johnson, A.T., Van der Vaart, N.C., Van der Enden, A., Harmans, C.J.P.M., and Foxon, C.T.: Quantized current in a quantum dot turnstile. Z. Phys. B: Condens. Matter 85, 381 (1991).
53. Tewordt, M., Martín-Moreno, L., Law, V.J., Kelly, M.J., Newbury, R., Pepper, M., Ritchie, D.A., Frost, J.E.F., and Jones, G.A.C.: Resonant tunneling in an Al x Ga1−x As/GaAs quantum dot as a function of magnetic field. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 3948 (1992).
54. Su, B., Goldman, V., and Cunningham, J.: Single-electron tunneling in nanometer-scale double-barrier heterostructure devices. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 7644 (1992).
55. Klein, D.L., McEuen, P.L., Katari, J.E.B., Roth, R., and Alivisatos, A.P.: An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 68, 2574 (1996).
56. Black, C.T., Ralph, D.C., and Tinkham, M.: Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles. Phys. Rev. Lett. 76, 688 (1996).
57. Grabert, H., Martinis, J.M., and Devoret, M.H. eds.: Single Charge Tunneling (Plenum, New York, 1991).
58. Tour, J.M., Jones, L. II, Pearson, D.L., Lamba, J.J.S., Burgin, T.P., Whitesides, G.M., Allara, D.L., Parikh, A.N., and Atre, S.: Self-assembled monolayers and multilayers of conjugated thiols, alpha, omega-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 117, 9529 (1995).
59. Toyoda, K., Morimoto, K., and Morita, K.: First Principles study on current through a single π conjugate molecule through an organic/metal interface. Surf. Sci. 600, Elsevier, 50805083 (2006).
60. Basch, H., Cohen, R., and Ratner, M.A.: Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching. Nano Lett. 5, 1668 (2005).
61. Kaur, R., Sawhney, R.S., and Engles, D.: Effect of gold electrode crystallographic orientations on charge transport through aromatic molecular junctions. Mol. Phys. 114, 22892298 (2016).
62. Xue, Y. and Ratner, M.A.: Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B: Condens. Matter Mater. Phys. 68, 115407/118 (2003).
63. Ke, S-H., Baranger, H.U., and Yang, W.: Contact atomic structure and electron transport through molecules. J. Chem. Phys. 122, 074704 (2005).
64. Ke, S-H., Baranger, H.U., and Yang, W.: Molecular conductance: Chemical trends of anchoring groups. J. Am. Chem. Soc. 126, 1589 (2004).
65. Herdt, G.C. and Czanderna, A.W.: Metal overlayers on organic functional groups of self-organized molecular assemblies. V. Ion scattering spectroscopy and x-ray photoelectron spectroscopy of Ag/COOH interfaces. J. Vac. Sci. Technol., A 13, 12751280 (1995).
66. Jung, D.R. and Czanderna, A.W.: Chemical and physical interactions at metal/self-assembled organic monolayer interfaces. Crit. Rev. Solid State Mater. Sci. 191, 154 (1994).
67. Jung, D.R., Czanderna, A.W., and Herdt, G.C.: Interactions and penetration at metal/self-assembled organic monolayer interfaces. J. Vac. Sci. Technol., A 14, 17791787 (1996).
68. Fisher, G.L., Hooper, A.E., Opila, R.L., Allara, D.L., and Winograd, N.: The interaction of vapor-deposited Al atoms with CO2H groups at the surface of a self-assembled alkanethiolate monolayer on gold. J. Phys. Chem. B 104, 32673273 (2000).
69. Fisher, G.L., Walker, A.V., Hooper, A.E., Tighe, T.B., Bahnck, K.B., Skriba, H.T., Reinard, M.D., Haynie, B.C., Opila, R.L., Winograd, N., and Allara, D.L.: Bond insertion, complexation, and penetration pathways of vapor-deposited aluminum atoms with HO- and CH3O-terminated organic monolayers. J. Am. Chem. Soc. 124, 55285541 (2002).
70. Konstadinidis, K., Zhang, P., Opila, R.L., and Allara, D.L.: An in-situ x-ray photoelectron study of the interaction between vapor-deposited Ti atoms and functional groups at the surfaces of self-assembled monolayers. Surf. Sci. 338, 300312 (1995).
71. Taylor, J., Brandbyge, M., and Stokbro, K.: Theory of rectification in tour wires: The role of electrode coupling. Phys. Rev. Lett. 89(13), 138301 (2002).
72. Lang, N.D.: Resistance of atomic wires. Phys. Rev. B: Condens. Matter Mater. Phys. 52, 5335 (1995).
73. Xue, Y., Datta, S., and Ratner, M.A.: First-principles based matrix Green's function approach to molecular electronic devices: General formalism. Chem. Phys. 281, 151 (2002).
74. Brandbyge, M., Mozos, J-L., Ordejón, P., Taylor, J., and Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 165401 (2002).
75. Taylor, J., Guo, H., and Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 245407 (2001).
76. Rodrigues, V., Fuhrer, T., and Ugarte, D.: Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 85, 4124 (2000).
77. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., and Tour, J.M.: Conductance of a molecular junction. Science 278, 252254 (1997).
78. Kharlamov, A., Kharlamova, G., Bondarenki, M., and Fomenko, V.: Joint synthesis of small carbon molecules (C3–C11), quasi-fullerenes (C40, C48, C52) and their hydrides. Chem. Eng. Sci. 1(3), 3240 (2013).
79. Leszczynski, J.: Handbook of Computational Chemistry (Springer, The Netherlands, 2012).
80. Balasubramanian, K.: Nuclear spin statistics of fullerene cages (C20–C40). Phys. Chem. 97(18), 46474658 (1993).
81. Dinca, M.F., Ciger, S., Stefu, M., Gherman, F., Miklos, K., Nagy, C.L., Ursu, O., and Diudea, M.V.: Stability prediction in C40 fullerenes. Carpathian J. Math. 20(2), 211 (2004).
82. Xiao, J., Lin, M., Chiu, Y-N., Fu, M., Lai, S-T., and Li, N.N.: The structures of fullerene C40 and its derivatives. J. Mol. Struct.: THEOCHEM 428(1–3), 149154 (1998).
83. Atomistic Toolkit Manual, Quantumwise Inc.
85. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
86. Landauer, R.: Conductance determined by transmission: Probes and quantised constriction resistance. J. Phys.: Condens. Matter 1, 8099 (1989).
87. Chen, F. and Tao, N.J.: Electron transport in single molecules: From benzene to graphene. Acc. Chem. Res. 42(3), 429438 (2009).
88. Heurich, J., Cuevas, J.C., Wenzel, W., and Schön, G.: Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels. Phys. Rev. Lett. 88, 256803 (2002).
89. Lawson, J.W. and Bauschlicher, C.W. Jr.: Transport in molecular junctions with different metallic contacts. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 125401 (2006).
90. Datta, S.: Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995).
91. Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., and Kushmerick, J.G.: Transition from direct tunneling to field emission in metal–molecule–metal junctions. Phys. Rev. Lett. 97, 026801 (2006).
92. Beebe, J.M., Kim, B., Frisbie, C.D., and Kushmerick, J.G.: Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2, 827 (2008).
93. Kuwabara, T., Sugiyama, H., Yamaguchi, T., and Takahashi, K.: Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517, 3766 (2009).
94. Paulsson, M. and Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B: Condens. Matter Mater. Phys. 67(24), 241403 (2003).
95. Cukier, E. and Cave, R.J.: Are hydrogen bonds unique among weak interactions in their ability to mediate electronic coupling? Chem. Phys. Lett. 402(1–3), 186191 (2005).
96. Kaur, R.P., Sawhney, R.S., and Engles, D.: Halogen doped aromatic molecular junctions in ultra-small functional nanoelectronic devices. Journal of Nanoenergy and Power Research (2016), in press.
97. Bâldea, I.: Counterintuitive issues in the charge transport through molecular junctions. Phys. Chem. Chem. Phys. 17, 31260 (2015).
98. Capozzi, B., Xia, J., Adak, O., Dell, E.J., Liu, Z-F., Taylor, J.C., Neaton, J.B., Campos, L.M., and Venkataraman, L.: Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522527 (2015).
99. Aviram, A. and Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277283 (1974).
100. Kaur, R.P., Sawhney, R.S., and Engles, D.: Augmenting Molecular Junctions with different transition metal contacts. J. Multiscale Modell. 5(2), 1350009 (2014).
101. Galperin, M., Nitzan, A., and Ratner, M.a.: Inelastic effects in molecular junctions in the Coulomb and Kondo regimes: Nonequilibrium equation-of-motion approach. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 035301 (2007).
102. Tada, T., Nozaki, D., Kondo, M., Hamayama, S., and Yoshizawa, K.: Oscillations of conductance in molecular junctions of carbon ladder compounds. J. Am. Chem. Soc. 126, 1418214189 (2004).
103. Andrews, D.Q., Cohen, R., Van Duyne, R.P., and Ratner, M.A.: Single molecule electron transport junctions: Charging and geometric effects on conductance. J. Chem. Phys. 125, 174718 (2006).
104. Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J.I., and Kubia, C.P.: Conductance spectra of molecular wires. J. Chem. Phys. 109, 2874 (1998).
105. Ohno, T.R., Chen, Y., Harvey, S.E., Kroll, G.H., Weaver, J.H., Haufler, R.E., and Smalley, R.E.: C60 bonding and energy-level alignment on metal and semiconductor surfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 44, 13747 (1991).

Keywords

Electrical characterization of quasi fullerene junctions formed with different metallic electrodes

  • Rupan Preet Kaur (a1), Ravinder Singh Sawhney (a1) and Derick Engles (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed