Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-19T21:35:34.381Z Has data issue: false hasContentIssue false

Electric Field Enhanced Synthesis of Nanostructured Tantalum Carbide

Published online by Cambridge University Press:  31 January 2011

Olivia A. Graeve
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
Zuhair A. Munir*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
*
a)Address all correspondence to this author.
Get access

Abstract

Nanocrystalline TaC was synthesized by the field-activated combustion method. The crystallite size ranged from about 30 to 55 nm, depending on the applied field. At low fields (8.54 ≤ E < 16.39 V cm−1) the average crystallite size was relatively unaffected by the field, but it showed a significant increase at fields higher than 16.39 V cm−1. From temperature measurements, this field was found to coincide with the melting of Ta. The combustion wave velocity likewise showed a significant increase when the temperature was at the melting point. The composition of the product showed a dependence on the magnitude of the applied field. At low field values (above a threshold) the product contained Ta2C. When synthesized at high fields, the product showed the presence of TaC phase only. The lattice parameter and the C/Ta ratio showed a slight dependence on the field, both increasing with an increase in the magnitude of the field.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Munir, Z.A., in Molybdenum and Molybdenum Alloys, edited by Crowson, A., Chen, E.S., Shields, J.A., and Subramanian, P.R.. (Proc. TMS Symp., Warrendale, PA, 1998), pp. 4960.Google Scholar
Graeve, O.A. and Munir, Z.A., J. Alloys Compounds, (in press, 2002).Google Scholar
Munir, Z.A., Z. Physik. Chem. 207, 39 (1998).CrossRefGoogle Scholar
Bowman, A.L., J. Phys. Chem. 65, 1596 (1961).CrossRefGoogle Scholar
Canteloup, J. and Mocellin, A., J. Mater. Sci. Lett. 11, 2352 (1976).Google Scholar
Johnson, M. and Nygren, M., J. Mater. Res. 12, 2419 (1997).CrossRefGoogle Scholar
Takahashi, T. and Sugiyama, K., J. Electrochem. Soc. 121, 714 (1974).CrossRefGoogle Scholar
Preiss, H., Schultze, D., and Klobes, P., J. Eur. Ceram. Soc. 17, 1423 (1997).CrossRefGoogle Scholar
Alexandre, N., Desmaison, M., Valin, F., and Boncoeur, M., Key Eng. Mater. 132–136, 868 (1997).CrossRefGoogle Scholar
Shimada, S., Koyama, T., Kodaira, K., and Mastushita, T., J. Mater. Sci. 18, 1291 (1983).CrossRefGoogle Scholar
Xue, H. and Munir, Z.A., Int. J. Self-Prop. High-Temp. Synth. 5, 229 (1996).Google Scholar
Knyazik, V.A. and Shteinberg, A.S., J. Mater. Synth. Proc. 1, 85 (1993).Google Scholar
Larson, E.M., Wong, J., Holt, J.B., Waide, P.A., Nutt, G., Rupp, B., and Terminello, L.J., J. Mater. Res. 8, 1533 (1993).CrossRefGoogle Scholar
Shtessel, E.A. and Dorozhevets, I.N., Combust. Explos. Shock Waves 26, 52 (1990).CrossRefGoogle Scholar
Hakansson, G., Petrov, I., and Sundgren, J.E., J. Vac. Sci. Technol. A 8, 3769 (1990).CrossRefGoogle Scholar
Cheah, L.K., Xu, S., and Tay, B.K., Electron. Lett. 33, 1338 (1997).CrossRefGoogle Scholar
Zhang, Q.Y., Mei, X.X., Yang, D.Z., Chen, F.X., Ma, T.C., Wang, Y.M., and Teng, F.N., Nucl. Instrum. Methods Phys. Res. B 127/128, 664 (1997).CrossRefGoogle Scholar
Wendler, B., Mater, Sci. Eng. A163, 215 (1993).Google Scholar
Dua, A.K. and George, V.C., Thin Solid Films 247, 34 (1994).CrossRefGoogle Scholar
Teghil, R., D’Alessio, L., Maria, G. De, and Ferro, D., Appl. Surf. Sci. 86, 190 (1995).CrossRefGoogle Scholar
Shkiro, V.M., Nersiyan, G.A., and Borovinskaya, I.P., Combust. Explos. Shock Waves 14, 455 (1978).CrossRefGoogle Scholar
Shkiro, V.M., Nersisyan, G.A., Borovinskaya, I.P., Merzhanov, A.G., and Shekhtman, V.S., Soviet Powd. Metall. Metal Ceram. 18(4), 227 (1979).CrossRefGoogle Scholar
Warren, B.E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969).Google Scholar
Marinkovic, B.A., Stojanovic, B.D., Rakocevic, Z., Kremenovic, A., and Duric, S., Cryst. Res. Technol. 34, 1005 (1999).3.0.CO;2-0>CrossRefGoogle Scholar