Skip to main content Accessibility help

Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe

  • Tevfik E. Özdemir (a1), Enver Koray Akdoğan (a1), İlyas Şavklıyıldız (a2), Hülya Biçer (a3), Metin Örnek (a1), Zhong Zhong (a4) and Thomas Tsakalakos (a1)...


Nano-TiB2 powder of 58 nm size with TiO2 and TiBO3 as secondary phases was heated with 20 °C to <650 °C in argon while applying an electric field. The powder became conductive at 520 and 305 °C (T onset) for 16 and 40 V/cm, respectively, at which point current bursts of 4.5 and 10.0 A (peak value) were observed. Current bursts were accompanied by >1% TiB2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB2 and TiO2, yielding TiBO3 that is absent with no field. Increase from 16 to 40 V/cm shifts the TiB2 → TiBO3 reaction forward, decreases T onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. The observed low temperature oxidation of TiB2 to TiBO3 that is electrochemically driven and is mediated by the TiO2 solid electrolyte.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Vallauri, D., Adrián, I.C.A., and Chrysanthou, A.: TiC–TiB2 composites: A review of phase relationships, processing and properties. J. Eur. Ceram. Soc. 28(8), 16971713 (2008).
2. Ziemnicka-Sylwester, M.: TiB2-based composites for ultra-high-temperature devices, fabricated by SHS, combining strong and weak exothermic reactions. Materials 6(5), 19031919 (2013).
3. Panda, K.B. and Ravi Chandran, K.S.: Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comput. Mater. Sci. 35(2), 134150 (2006).
4. Ray, S.P.: Boride-alumina composites. Metall. Trans. A 23(9), 23812385 (1992).
5. Cutler, R.A.: Engineering properties of borides. In Eng. Mater. Handbook, Vol. 4 (ASM International: Metals Park, 1991); pp. 787801.
6. Chiang, Y-M., Birnie, D.P., and Kingery, W.D.: Physical Ceramics: Principles for Ceramic Science and Engineering (John Wiley & Sons, New York, 1997).
7. Telle, R.: Boride and carbide ceramics. In Mater. Sci. Technol., Cahn, R.W. ed.; VCH: Weinheim, 1994; p. 175.
8. Goor, G., Sagesser, P., and Berroth, K.: Electrically conductive ceramic composites. Solid State Ionics 101(103), 11631170 (1997).
9. Li, J., , X., Lai, Y., Li, Q., and Liu, Y.: Research progress in TiB2 wettable cathode for aluminum reduction. JOM 60(8), 3237 (2008).
10. Mohanty, P.S. and Gruzleskit, J.E.: Mechanism of grain refinement in aluminum. Pergamon 43(5), 20012012 (1995).
11. Huang, S.G., Vanmeensel, K., Malek, O.J.a., Van der Biest, O., and Vleugels, J.: Microstructure and mechanical properties of pulsed electric current sintered B4C–TiB2 composites. Mater. Sci. Eng., A 528(3), 13021309 (2011).
12. Kulpa, A. and Troczynski, T.: Oxidation of TiB2 powders below 900 °C. J. Am. Ceram. Soc. 79(2), 518520 (1996).
13. Baik, S. and Becher, P.F.: Effect of oxygen contamination on densification of TiB2 . J. Am. Ceram. Soc. 70(8), 527530 (1987).
14. Ferranti, L. and Thadhani, N.N.: Quantitative characterization of the microstructure of two-phase TiB2 + Al2O3 ceramics using mean integral curvature. Metall. Mater. Trans. A 34, 26712678 (2003).
15. Suskin, G. and Chepovetsky, G.: Comparison of vacuum and pressure assisted sintering of TiB2–Ni. J. Mater. Eng. Perform. 5, 396398 (1996).
16. Torizuka, S. and Kishi, T.: Effect of SiC and ZrO2 on sinterability and mechanical properties of titanium nitride, titanium carbonitride, and titanium diboride. Mater. Trans. 37, 782787 (1996).
17. Torizuka, S., Nishio, H., and Kishi, T.: Sinterability and mechanical properties of TiB2 without additives. J. Ceram. Soc. Jpn. 103, 10771081 (1995).
18. Matsushita, J., Nagashima, H., and Saito, H.: Preparation and mechanical properties of TiB2 composites containing Ni and C. J. Ceram. Soc. Jpn. 99, 7882 (1991).
19. Einarsrud, M., Hagen, E., Pettersen, G., and Grande, T.: Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives. J. Am. Ceram. Soc. 80, 30133020 (1997).
20. Tennery, V.J., Finch, C.B., Yust, C.S., and Clark, G.W.: Structure–property correlations for TiB2 based ceramics densified using active liquid metals. In Sci. Hard Mater., Viswanadham, R.K., Rowcliffe, D.J., and Gurland, J. eds.; Plenum: New York, 1981; pp. 891909.
21. Holcombe, C.E. and Dykes, N.L.: Microwave sintering of titanium diboride. J. Mater. Sci. 26(14), 37303738 (1991).
22. Besson, J., Valin, F., Lointier, P., and Boncoeur, M.: Densification of titanium diboride by hot isostatic pressing and production of near-net-shape components. J. Mater. Eng. Perform. 1, 637650 (1992).
23. Muraoka, Y., Yoshinaka, M., Hirota, K., and Yamaguchi, O.: Hot isostatic pressing of TiB2–ZrO2 (2 mol% Y2O3) composite powders. Mater. Res. Bull. 31, 787792 (1996).
24. Wang, L. and Wixom, M.R.: Structural and mechanical properties of TiB2 and TiC prepared by self-propagating high-temperature synthesis/dynamic compaction. J. Mater. Sci. 29, 534543 (1994).
25. Rudy, E.: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Part V. In Air Force Materials Laboratory (Wright-Patterson Air Force Base: Dayton, 1969); p. 198.
26. McHale, A.E.: Phase equilibria diagrams. In Phase Diagrams for Ceramists: Borides, Carbides, and Nitrides, Vol. X, McHale, A.E., ed. (American Ceramic Society: Westerville, 1994); pp. 140141.
27. Duschanek, H., Rogl, P., and Lukas, H.L.: A critical assessment and thermodynamic calculation of the boron-carbon-titanium (B–C–Ti) ternary system. J. Phase Equilib. 16(1), 4660 (1995).
28. Raju, G.B.: Development of high temperature TiB2 based ceramics. Key Eng. Mater. 395, 89124 (2009).
29. Cobb, P.C.: Titanium carbide as a sintering agent for titanium boride. Mater. Des. 11(3), 156159 (1990).
30. Matsushita, J. and Sano, A.: Sinterability of TiB2 ceramics containing Cr and C as the sintering aids. J. Ceram. Soc. 100(4), 593595 (1992).
31. Cologna, M., Rashkova, B., and Raj, R.: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93(11), 35563559 (2010).
32. Akdoğan, E.K., Şavklıyıldız, İ., Biçer, H., Paxton, W., Toksoy, F., Zhong, Z., and Tsakalakos, T.: Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe. J. Appl. Phys. 113(23), 233503 (2013).
33. Grasso, S., Hu, C., Maizza, G., Kim, B-N., and Sakka, Y.: Effects of pressure application method on transparency of spark plasma sintered alumina. J. Am. Ceram. Soc. 94(5), 14051409 (2011).
34. Conrad, H. and Yang, D.: Influence of an applied dc electric field on the plastic deformation kinetics of oxide ceramics. Philos. Mag. 90(9), 11411157 (2010).
35. Hao, X., Liu, Y., Wang, Z., Qiao, J., and Sun, K.: A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J. Power Sources 210, 8691 (2012).
36. Biçer, H., Akdoğan, E.K., Visser, B., Şavklıyıldız, İ., Özdemir, T.E., Zhong, Z., and Tsakalakos, T.: In situ time resolved EDXRD on densification of B4C under superimposed electric and thermal fields at ultralow temperatures. Unpubl. data (2015).
37. Raj, R.: Joule heating during flash-sintering. J. Eur. Ceram. Soc. 32(10), 22932301 (2012).
38. Graziani, T., Landi, E., and Bellosi, A.: Oxidation of TiB2–20 vol% B4C composite. J. Mater. Sci. Lett. 12, 691694 (1993).
39. Tampieri, A. and Bellosi, A.: Oxidation of monolithic TiB2 and of Al2O3–TiB2 composite. J. Mater. Sci. 28, 649653 (1993).
40. Irving, R.J. and Worsley, I.G.: The oxidation of titanium diboride and zirconium diboride at high temperatures. J. Less-Common Met. 16, 103112 (1968).
41. Koh, Y., Lee, S., and Kim, H.: Oxidation behavior of titanium boride at elevated temperatures. J. Am. Ceram. Soc. 41, 239241 (2001).
42. Lee, D.B., Kim, M.H., Yang, C.W., Lee, S.H., Yang, M.H., and Kim, Y.J.: The oxidation of TiB2 particle-reinforced TiAl intermetallic composites. Oxid. Met. 56(3/4), 215229 (2001).
43. Lee, D.B., Lee, Y.C., and Kim, D.J.: The oxidation of TiB2 ceramics containing Cr and Fe. Oxid. Met. 56(1/2), 177189 (2001).
44. Li, L., Weidner, D.J., Chen, J., Vaughan, M.T., and Davis, M.: X-ray strain analysis at high pressure: Effect of plastic deformation in MgO. J. Appl. Phys. 95(12), 83578365 (2004).
45. Wang, Y., Durham, W.B., Getting, I.C., and Weidner, D.J.: The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Rev. Sci. Instrum. 74(6), 30023011 (2003).
46. Spence, J.C.H., Zatsepin, N.A., and Li, C.: Coherent convergent-beam time-resolved x-ray diffraction. Philos. Trans. R. Soc., B 369(1647), 20130325 (2014).
47. Steuwer, A., Santisteban, J.R., Turski, M., Withers, P.J., and Buslaps, T.: High-resolution strain mapping in bulk samples using full-profile analysis of energy dispersive synchrotron x-ray diffraction data. Nucl. Instrum. Methods Phys. Res., Sect. B 238, 200204 (2005).
48. US Research Nanomaterials Inc.: Titanium diboride nanopowder/nanoparticles (95 + %, 58 nm, hexagonal) (2014).
49. Kubaschewski, O.: Titanium: Physico-chemical Properties of its Compounds and Alloys, Komarek, K.L., ed. (Int. At. Agency: Vienna, 1983).
50. Holtz, J.H., Holtz, J.S.W., Munro, C.H., and Asher, S.A.: Intelligent polymerized crystalline colloidal arrays: Novel chemical sensor materials. Anal. Chem. 70(4), 780791 (1998).
51. Pais, A.: Einstein and the quantum theory. Rev. Mod. Phys. 51(4), 863914 (1979).
52. Akdoğan, E.K., Şavklıyıldız, İ., Zhong, Z., and Tsakalakos, T.: Line profile calibration of ultrahigh energy synchrotron EDXRD data by LaB6 . Unpubl. data (2013).
53. Aivazov, M.I. and Domashev, I.A.: Electrophysical properties of titanium diboride and alloys in the system Ti–B–N. Inorg. Mater. 7, 15511553 (1971).
54. Baur, W.H. and Khan, A.A.: Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 21332139 (1971).
55. Huber, M. and Deiseroth, H.J.: Crystal structure of titanium(III) borate, TiBO3 . Z. Kristallogr. 210(9), 685 (1995).
56. Laidler, K.J.: Chemical Kinetics, 3rd ed. (Prentice Hall, New York, 1987); pp. 3948.
57. Christian, J.W.: The Theory of Transformations in Metals and Alloys, Vol. 1, 1st ed. (Pergamon Press, New York, 2002); pp. 7994.
58. Guggenheim, E.A.: Thermodynamics: An advanced Treatment for Chemists and Physicists, 8th ed. (North Holland, Amsterdam, 1986).
59. Radmilovic, V., Ophus, C., Marquis, E.A., Rossell, M.D., Tolley, A., Gautam, A., Asta, M., and Dahmen, U.: Highly monodisperse core-shell particles created by solid-state reactions. Nat. Mater. 10, 710715 (2011).
60. Schaub, R., Wahlström, E., Rønnau, A., Lægsgaard, E., Stensgaard, I., and Besenbacher, F.: Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science 299(5605), 377379 (2003).
61. Paris, A. and Taioli, S.: Multiscale investigation of oxygen vacancies in TiO2 anatase and their role in Memristor’s behavior. J. Phys. Chem. C 120(38), 2204522053 (2016).
62. Pan, X., Yang, M-Q., Fu, X., Zhanga, N., and Xu, Y-J.: Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 5, 36013614 (2013).
63. Landau, L.D., Pitaevskii, L.P., and Lifshitz, E.M.: Electrodynamics of continuous media. In Course of Theoretical Physics, Vol. 8, 2nd ed. (Butterworth-Heinemann, Oxford, 1984).
64. Park, J., Lee, Y., Koh, Y., and Kim, H.: Effect of hot-pressing temperature on densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid. J. Am. Ceram. Soc. 83(6), 15421544 (2000).


Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe

  • Tevfik E. Özdemir (a1), Enver Koray Akdoğan (a1), İlyas Şavklıyıldız (a2), Hülya Biçer (a3), Metin Örnek (a1), Zhong Zhong (a4) and Thomas Tsakalakos (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed