Skip to main content Accessibility help

Elastic properties of anisotropic monolithic samples of compressed expanded graphite studied with ultrasounds

  • M. Krzesińska (a1), A. Celzard (a2), J.F. Marêché (a2) and S. Puricelli (a2)


The elastic properties of cubic samples of compressed expanded graphite determined by means of ultrasonic velocity measurements are presented. These materials are highly porous and exhibit porosity-dependent anisotropic moduli. The results are analyzed according to two approaches. The first involves semi-empirical equations fitted to the experimental data, resulting in information about the shape and the connectivity of pores. It is found that pores are oblate ellipsoids, connected parallel to their direction of flatness. The second approach is based on application of the percolation theory near the rigidity threshold. The value of the critical exponent indicates that compressed expanded graphites behave like elastic networks in which central forces are predominant. Results of this study give evidence that ultrasound is a convenient and accurate method for investigation of the critical behavior of the elastic properties in highly tenuous structures.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Furdin, G., Fuel 77, 479 (1998); D.D.L. Chung, J. Mater. Sci. 22, 4190 (1987); F. Kang, Y. Leng, and T.Y. Zhang, J. Phys. Chem. Solids 57, 889 (1996); CECA S.A. and Le Carbone Lorraine S.A., Brit. Pat. 1 (588) (1981) 876.
2.Thomy, A., Duval, X., and Régnier, J., Surf. Sci. Rep. 1, 1 (1981).
3.Puricelli, S., Marêché, J.F., Furdin, G., Bégin, D., and Pajak, J., Enveloppe Soleau No. INPI 52 648.
4.Nozdriev, V.F., in Molekularnaya Akustika (Vysshaya Shkola Press, Moscow, 1974; in Russian), p. 10 and Chap. IV; see also V.F. Nozdriev in The Use of Ultrasonics in Molecular Physics (MacMillan, New York, 1965).
5.Krzesińska, M., Fuel 77, 649 (1998).
6.Byrne, J.F. and Marsh, H., in Porosity in Carbons: Characterization and Applications, edited by Patrick, J.W. (Edward Arnold, London, United Kingdom, 1995), Chap. 1; B. McEnaney and T.J. Mays, in Introduction to Carbon Science, edited by H. Marsh (Butterworths, London, United Kingdom, 1989), Chap. 5.
7.Sliwinski, A., in Ultrasounds and their Applications (WNT, Warsaw, Poland, 1993; in Polish), p. 32.
8.Stein, R.S. and Wilkes, G.L., in Structure and Properties of Oriented Polymers, edited by Ward, I.M. (Appl. Sci. Publishers, London, United Kingdom, 1975), p. 136; I. Perepetchko, in Acoustic Methods of Investigating Polymers (Mir Publishers, Moscow, 1975; translated from the Russian), pp. 14–15.
9.Truell, R., Elbaum, C., and Chick, B.B., in Ultrasonic Methods in Solid State Physics (Academic Press, London, United Kingdom, 1969), Chap. 2.
10.Klatt, M., Ph.D. Thesis, University of Nancy I, France (1985); R.E. Stevens, S. Ross, and S.P. Wesson, Carbon 11, 525 (1973); A. Yoshida, Y. Hishiyama, and M. Inagaki, Carbon 29, 1227 (1991).
11.Patrick, J.W. and Walker, A., in Porosity in Carbons: Characterization and Applications, edited by Patrick, J.W. (Edward Arnold, London, United Kingdom, 1995), Chap. 7.
12.Zhao, Y.X. and Spain, I.L., Phys. Rev. B 40, 993 (1989).
13.Rice, R.W., J. Mater. Sci. 31, 1509 (1996).
14.Rice, R.W., Key Eng. Mater. 115, 1 (1996).
15.Spriggs, R.M., J. Am. Ceram. Soc. 44, 628 (1961); J.C. Wang, J. Mater. Sci. 19, 801 (1984).
16.Phani, K.K. and Niyogi, S.K., J. Mater. Sci. 22, 257 (1987).
17.Czeremskoy, P.G., Slezow, W.W., and Betechtin, W.I., in Pores in Solids (Energoatomizdat, Moscow, 1990; in Russian), pp. 306313; J. Berdowski and M. Krzesińska, in Proc. French-Polish Conf. of GDRE on Carbon Chemistry: Functionalized Carbon Materials, Zakopane, September 1997, edited by CNRS-PAS (University H. Poincaré–ICC PAS, Nancy–Gliwice, 1997), p. 100.
18.Krzesińska, M., Pajak, J., Oger, N., Celzard, A., Marêché, J.F., and Puricelli, S., in Proc. International Conf. of GDRE on Function-alized Carbon Materials with Controlled Porosity, Zakopane, September 1999, edited by CNRS-PAS (ICC PAS, Gliwice), p. 60.
19.Rice, R.W., J. Mater. Sci. 31, 102 (1996).
20.Celzard, A. and Marêché, J.F. (unpublished).
21.Dowell, M.B. and Howard, R.A., Carbon 24, 311 (1986).
22.Sahimi, M., Phys. Rep. 306, 213 (1998).
23.Gennes, P.G. De, J. Phys. Lett. 37, L1 (1976).
24.Guyon, E. and Roux, S., La Recherche (Paris) 18, 1050 (1987).
25.Gennes, P.G. De, J. Phys. Colloq. 41, C317 (1980); S. Alexander, J. Phys. (Paris) 45, 1939 (1984); A.R. Day, R.R. Tremblay, and A.M.S. Tremblay, Phys. Rev. Lett. 56, 2501 (1986).
26.Sahimi, M. and Arbabi, S., Phys. Rev. B 47, 703 (1993).
27.Roux, S., Acad, C.R.. Sci., Sér 2 301, 367 (1985); Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891 (1984); S. Roux, J. Phys. A: Math. Gen. 19, L351 (1986); E. Del Gado, L. De Arcangelis, and A. Coniglio, Europhys. Lett. 46, 288 (1999).
28.Sahimi, M., in Applications of Percolation Theory (Taylor and Francis, Bristol, PA, 1994), p. 16.
29.Sahimi, M., J. Phys. C: Solid State Phys. 19, L79 (1986); S. Feng, P.N. Sen, B.I. Halperin, and C.J. Lobb, Phys. Rev. B 30, 5386 (1984).
30.Obukhov, S.P., Phys. Rev. Lett. 74, 4472 (1995).
31.Smith, L.N. and Lobb, C.J., Phys. Rev. B 20, 3653 (1979).
32.Balberg, I. and Binenbaum, N., Phys. Rev. B 28, 3799 (1983); C.J. Lobb, D.J. Franck, and M. Tinkham, Phys. Rev. B 23, 2262 (1981).
33.Blanc, R., Mitescu, C.D., and Thévenot, G., J. Phys. (Paris) 41, 387 (1980); I. Balberg and N. Binenbaum, Phys. Rev. A 31, 1222 (1985); S. Yoon and S.I. Lee, Physica B 167, 133 (1990); K.S. Mendelson and F.G. Karioris, J. Phys. C: Solid State Phys. 13, 6197 (1980); A.K. Sarychev and A.P. Vinogradoff, J. Phys. C: Solid State Phys. 12, L681 (1979).
34.Kantor, Y. and Webman, I., Phys. Rev. Lett. 52, 1891 (1984); S. Feng and P.N. Sen, Phys. Rev. Let. 52, 216 (1984); C. Moukarzel and P.M. Duxbury, Phys. Rev. E 59, 2614 (1999); A. Gilabert, M. Ben-Ayad, S. Roux, and E. Guyon, J. Phys. (Paris) 49, 1629 (1988); S. Feng, M.F. Thorpe, and E. Garboczi, Phys. Rev. B 31, 276 (1985); D.J. Jacobs and M.F. Thorpe, Phys. Rev. E 53, 3682 (1996).
35.Phillips, J.C. and Thorpe, M.F., Solid State Commun. 53, 699 (1985).

Elastic properties of anisotropic monolithic samples of compressed expanded graphite studied with ultrasounds

  • M. Krzesińska (a1), A. Celzard (a2), J.F. Marêché (a2) and S. Puricelli (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed