Skip to main content Accessibility help
×
Home

The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation

  • G.J. Fan (a1), W.H. Jiang (a1), F.X. Liu (a1), H. Choo (a1), P.K. Liaw (a1), B. Yang (a2), L.F. Fu (a3) and N.D. Browning (a4)...

Abstract

A bulk nanocrystalline (nc) Ni–Fe alloy was subjected to tensile deformation, which leads to grain growth. The nanoindentation study indicates that the hardness, H, and Young’s modulus, E, of the nc alloy before and after tensile deformation did not show a clear indentation-rate effect. However, the tensile deformation results in a decrease in the E values of about 15%, which might be attributed to the grain rotation, leading to texture development during the stress-induced grain growth.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: gfan@utk.edu

References

Hide All
1Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
2Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
3Nieh, T.G. and Wadsworth, J.: Hall-Petch relation in nanocrystalline solids. Scripta Metall. Mater. 25, 955 (1991).
4Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).
5Van Swygenhoven, H. and Derlet, P.M.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B: Condens. Matter 64, 224105 (2001).
6Wolf, D., Yamakov, V., Phillpot, S.R., Mukherjee, A., and Gleiter, H.: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53, 1 (2005).
7Fan, G.J., Choo, H., Liaw, P.K., and Lavernia, E.J.: Strength softening and stress relaxation of nanostructured materials. Metall. Trans. A 36, 2641 (2005).
8Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).
9Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).
10Yang, F.Q., Du, W.W., and Okazaki, K.: Effect of cold rolling on the indentation deformation of AA6061 aluminum alloy. J. Mater. Res. 20, 1172 (2005).
11Van Vliet, K.J., Tsikata, S., and Suresh, S.: Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals. Appl. Phys. Lett. 83, 1441 (2003).
12Wang, Y.M., Hodge, A.M., Biener, J., Hamza, A.V., Barnes, D.E., Liu, K., and Nieh, T.G.: Deformation twinning during nanoindentation of nanocrystalline Ta. Appl. Phys. Lett. 86, 101915 (2005).
13Zhang, M., Yang, B., Chu, J., and Nieh, T.G.: Hardness enhancement in nanocrystalline tantalum thin films. Scripta Mater. 54, 1227 (2006).
14Jiang, W.H. and Atzmon, M.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).
15Zhang, K., Weertman, J.R., and Eastman, J.A.: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).
16Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).
17Fan, G.J., Wang, Y.D., Fu, L.F., Choo, H., Liaw, P.K., Ren, Y., and Browning, N.D.: Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. Appl. Phys. Lett. 88, 171914 (2006).
18Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H.S., Li, X.D., Mukherjee, A.K., Bingert, J.F., and Zhu, Y.T.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).
19Gianola, D.S., Petegem, S.V., Legros, M., Brandstetter, S., Van Swygenhoven, H., and Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).
20Fan, G.J., Fu, L.F., Qiao, D.C., Choo, H., Liaw, P.K., and Browning, N.D.: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scripta Mater. 54, 2137 (2006).
21Fan, G.J., Fu, L.F., Choo, H., Liaw, P.K., and Browning, N.D.: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater. 54, 4781 (2006).
22Fan, G.J., Fu, L.F., Wang, Y.D., Ren, Y., Choo, H., Liaw, P.K., Wang, G.Y., and Browning, N.D.: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. Appl. Phys. Lett. 89, 101918 (2006).
23Chen, J., Shi, Y.N., and Lu, K.: Strain rate sensitivity of a nanocrystalline Cu-Ni-P alloy. J. Mater. Res. 20, 2955 (2005).
24Pan, D., Nieh, T.G., and Chen, M.W.: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).
25Hertzberg, R.: Deformation and Fracture Mechanics of Engineering Materials 4th ed. (Wiley, New York, NY, 1996) p. 6.
26Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R., and Hemker, K.J.: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80, 1017 (2000).
27Sanders, P., Youngdahl, C.P., and Weertman, J.R.: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234–236, 77 (1997).
28Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).
29Zhou, Y., Erb, U., Aust, K.T., and Palumbo, G.: Young’s modulus in nanostructured metals. Z. Metallkd. 94, 1157 (2003).
30Zeng, X.H. and Ericsson, T.: Anisotropy of elastic properties in various aluminium-lithium sheet alloys. Acta Mater. 44, 1801 (1996).
31Park, Y.B., Lee, D.N., and Gottstein, G.: The evolution of recrystallization textures in body centred cubic metals. Acta Mater. 10, 3371 (1998).
32Hurley, D.C., Geiss, R.H., Kopycinska-Muller, M., Muller, J., Read, D.T., Wright, J.E., Jennett, N.M., and Maxwell, A.S.: Anisotropic elastic properties of nanocrystalline nickel thin films. J. Mater. Res. 20, 1186 (2005).

The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation

  • G.J. Fan (a1), W.H. Jiang (a1), F.X. Liu (a1), H. Choo (a1), P.K. Liaw (a1), B. Yang (a2), L.F. Fu (a3) and N.D. Browning (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed