Skip to main content Accessibility help

Effects of Sub-ångstrom (pico-scale) Structure of Surfaces on Adhesion, Friction, and Bulk Mechanical Properties

  • Jacob Israelachvili (a1), Nobuo Maeda (a2), Kenneth J. Rosenberg (a3) and Mustafa Akbulut (a2)


We review experimental results—over the past 10–15 years and more recent theoretical modeling and computer simulations—on the effects of surface subnanoscale texture on adhesion and friction and the implications for certain mechanical properties of materials such as Mode I and Mode II failure. Examples and comparisons include surfaces that are adhesive or nonadhesive, rough or smooth, hard or soft (e.g., viscoelastic polymers), dry (unlubricated) or lubricated. One important conclusion is that the ultrafine picoscale details of a surface lattice or its roughness (“texture”) can be the most important factor in determining its friction and Mode II fracture, whereas such effects are less important for determining adhesion forces and Mode I fracture processes. Such studies are also clarifying the molecular and atomic basis of many well-established adhesion and tribological laws and empirical observations and are revealing new fundamental insights and relationships between nanoscale (molecular) and macroscale processes.


Corresponding author

a) Address all correspondence to this author. e-mail: This article is based on the MRS Medal Award presentation given by Jacob N. Israelachvili on December 1, 2004, at the Materials Research Society’s Fall Meeting in Boston. An edited transcript of the award presentation was published in the MRS Bulletin in July 2005. This JMR article has expanded technical content and has additional coauthors.


Hide All
1Luan, B. and Robbins, M.O.: Nature 435, 929 (2005).
2Ruths, M., Berman, A. and Israelachvili, J.: Surface forces and nanorheology of molecularly thin films, in Handbook of Nanotechnology, edited by Bhushan, B. (Springer-Verlag, Berlin, Germany, 2003), p. 543.
3Gao, J.P., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N. and Landman, U.: Frictional forces and Amontons’ law: From the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410 (2004).
4Landman, U., Luedtke, W.D. and Gao, J.P.: Atomic-scale issues in tribology: Interfacial junctions and nano-elastohydrodynamics. Langmuir 12, 4514 (1996).
5Bhushan, B., Israelachvili, J.N. and Landman, U.: Nanotribology—Friction, wear and lubrication at the atomic-scale. Nature 374, 607 (1995).
6Persson, B.N.J. and Tosatti, E.: The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 115, 5597 (2001).
7Kendall, K.: Molecular Adhesion and Its Applications: The Sticky Universe (Kluwer Academic/Plenum Publishers, New York, 2001).
8Persson, B.N.J.: Nanoadhesion. Wear 254, 832 (2003).
9Greenwood, J.A. and Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London, Ser. A 295, 300 (1966).
10Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).
11Maugis, D. and Pollock, H.M.: Surface forces, deformation and adherence at metal microcontacts. Acta Metall. Mater. 32, 1323 (1984).
12Budakian, R. and Putterman, S.J.: Time scales for cold welding and the origins of stick-slip friction. Phys. Rev. 65, 5 (2002).
13Quon, R.A., Knarr, R.F. and Vanderlick, T.K.: Measurement of the deformation and adhesion of rough solids in contact. J. Phys. Chem. B 103, 5320 (1999).
14Holysz, L.: The effect of thermal treatment of silica gel on its surface free energy components. Colloid. Surf. A, Physicochemical Eng. Aspects. 134, 321 (1998).
15Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, U.K., 1991).
16Quon, R.A., Ulman, A. and Vanderlick, T.K.: Impact of humidity on adhesion between rough surfaces. Langmuir 16, 8912 (2000).
17He, G., Muser, M.H. and Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284, 1650 (1999).
18Urbakh, M., Klafter, J., Gourdon, D. and Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525 (2004).
19Thompson, P.A. and Robbins, M.O.: Origin of stick-slip motion in boundary lubrication. Science 250, 792 (1990).
20Thomas, T.R.: Rough Surfaces, 2nd ed. (Imperial College Press, London, U.K., 1999).
21Bowden, F.P. and Tabor, D.: The Friction and Lubrication of Solids (Clarendon Press, Oxford, U.K., 1986).
22Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I. and Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1 (2005).
23Carpick, R.W., Agrait, N., Ogletree, D.F. and Salmeron, M.: Variation of the interfacial-shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334 (1996).
24Fuller, K.N.G. and Tabor, D.: Effect of surface-roughness on adhesion of elastic solids. Proc. R. Soc. London, Ser. A 345, 327 (1975).
25Chang, W.R., Etsion, I. and Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol. T ASME. 109, 257 (1987).
26Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87(11), 116101 (2001).
27Muser, M.H., Wenning, L. and Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295 (2001).
28Hyun, S., Pei, L., Molinari, J.F. and Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004).
29Luan, B., Hyun, S., Robbins, M.O., and Bernstein, N.: Multiscale modeling of two dimensional rough surface contacts, in Fundamentals of Nanoindentation and Nanotribology III, edited by Wahl, K.J., Huber, N., Mann, A.B., Bahr, D.F., and Cheng, Y-T. (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R7.4, p. 231.
30Kogut, L. and Etsion, I.: A finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans. 46, 383 (2003).
31Benz, M., Rosenberg, K.J., and Israelachvili, J.N. (unpublished).
32Yokoyama, H., Mates, T.E. and Kramer, E.J.: Structure of asymmetric diblock copolymers in thin films. Macromolecules 33, 1888 (2000).
33Benz, M., Euler, W.B. and Gregory, O.J.: The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 35, 2682 (2002).
34Gent, A.N. and Lai, S.M.: Adhesion and autohesion of rubber compounds—Effect of surface roughness. Rubber Chem. Technol. 68, 13 (1995).
35Kim, H.C. and Russell, T.P.: Contact of elastic solids with rough surfaces. J Polym. Sci. Pol. Phys. 39, 1848 (2001).
36Landman, U. Private communication.
37Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. Journal of Mechanics and Physics of Solids (submitted).
38Bhushan, B. and Nosonovsky, M.: Scale effects in dry and wet friction, wear, and interface temperature. Nanotechnology 15, 749 (2004).
39Bhushan, B. and Nosonovsky, M.: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing). Acta Mater. 52, 2461 (2004).
40Palasantzas, G.: Influence of self-affine surface roughness on the friction coefficient for rubbers. J. Appl. Phys. 94, 5652 (2003).
41Biswas, S.K. and Vijayan, K.: Friction and wear of PtFe: A review. Wear 158, 193 (1992).
42Spalding, M.A., Kirkpatrick, D.E. and Hyun, K.S.: Coefficients of dynamic friction for low-density polyethylene. Polym. Eng. Sci. 33, 423 (1993).
43Heuberger, M., Luengo, G. and Israelachvili, J.N.: Tribology of shearing polymer surfaces. 1. Mica sliding on polymer (PnBMA). J. Phys. Chem. B 103, 10127 (1999).
44Luengo, G., Heuberger, M. and Israelachvili, J.: Tribology of shearing polymer surfaces. 2. Polymer (PnBMA) sliding on mica. J. Phys. Chem. B 104, 7944 (2000).
45Ruths, M. and Granick, S.: Rate-dependent adhesion between opposed perfluoropoly(alkyl ether) layers: Dependence on chain-end functionality and chain length. J. Phys. Chem. B 102, 6056 (1998).
46Yamada, S. and Israelachvili, J.: Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B 102, 234 (1998).
47Maeda, N., Chen, N.H., Tirrell, M. and Israelachvili, J.N.: Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379 (2002).
48Berman, A., Steinberg, S., Campbell, S., Ulman, A. and Israelachvili, J.: Controlled microtribology of a metal oxide surface. Tribol Lett. 4, 43 (1998).
49Israelachvili, J., Giasson, S., Kuhl, T., Drummond, C., Berman, A., Luengo, G., Pan, J-M., Heuberger, M., Ducker, W., and Alcantar, N.: Thinning films and tribological interfaces, in Proceedings of the 26th Leeds-Lyon Symposium, Tribology Series 38, (Elsevier, 2000), p. 3.
50Cumings, J. and Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602 (2000).
51Falvo, M.R., Taylor, R.M., Helser, A., Chi, V., Brooks, F.P., Washburn, S. and Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236 (1999).
52Buldum, A. and Lu, J.P.: Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050 (1999).
53Liu, B., Yu, M.F. and Huang, Y.G.: Role of lattice registry in the full collapse and twist formation of carbon nanotubes. Phys. Rev. B 70, 199901 (2004).
54Chhowalla, M. and Amaratunga, G.A.J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).
55Drummond, C., Alcantar, N., Israelachvili, J., Tenne, R. and Golan, Y.: Microtribology and friction-induced material transfer in WS2 nanoparticle additives. Adv. Funct. Mater. 11, 348 (2001).
56Golan, Y., Drummond, C., Homyonfer, M., Feldman, Y., Tenne, R. and Israelachvili, J.: Microtribology and direct force measurement of WS2 nested fullerene-like nanostructures. Adv. Mater. 11, 934 (1999).
57Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R. and Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).
58Greenberg, R., Halperin, G., Etsion, I. and Tenne, R.: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol Lett. 17, 179 (2004).
59Schwarz, U.S., Komura, S. and Safran, S.A.: Deformation and tribology of multi-walled hollow nanoparticles. Europhys. Lett. 50, 762 (2000).
60Goldstein, A.N., Echer, C.M. and Alivisatos, A.P.: Melting in semiconductor nanocrystals. Science 256, 1425 (1992).
61Tolbert, S.H. and Alivisatos, A.P.: High-pressure structural transformations in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 46, 595 (1995).
62Gilbert, B., Huang, F., Zhang, H.Z., Waychunas, G.A. and Banfield, J.F.: Nanoparticles: Strained and stiff. Science 305, 651 (2004).
63Alig, A.R.G., Akbulut, M. and Israelachvili, J.N. (in preparation).
64Gourdon, D., Yasa, M., Alig, A.R.G., Li, Y.L., Safinya, C.R. and Israelachvili, J.N.: Mechanical and structural properties of BaCrO4 nanorod films under confinement and shear. Adv. Funct. Mater. 14, 238 (2004).
65Mitchell, D.J., Ninham, B.W. and Pailthorpe, B.A.: Solvent structure in particle interactions. 2. Forces at short-range. J. Chem. Soc., Faraday Transactions II 74, 1116 (1978).
66Snook, I.K. and Vanmegen, W.: Solvation force between colloidal particles. Phys. Lett. A 74, 332 (1979).
67Tarazona, P. and Vicente, L.: A model for density oscillations in liquids between solid walls. Mol. Phys. 56, 557 (1985).
68Christenson, H.K. and Horn, R.G.: Direct measurement of the force between solid-surfaces in a polar liquid. Chem. Phys. Lett. 98, 45 (1983).
69Horn, R.G. and Israelachvili, J.N.: Direct measurement of structural forces between 2 surfaces in a non-polar liquid. J. Chem. Phys. 75, 1400 (1981).
70Kumacheva, E. and Klein, J.: Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films. J. Chem. Phys. 108, 7010 (1998).
71Cohen, I., Mason, T.G. and Weitz, D.A.: Shear-induced configurations of confined colloidal suspensions. Phys. Rev. Lett. 93, 046001 (2004).
72Gee, M.L., Mcguiggan, P.M., Israelachvili, J.N. and Homola, A.M.: Liquid to solid-like transitions of molecularly thin-films under shear. J. Chem. Phys. 93, 1895 (1990).
73Drummond, C., Alcantar, N. and Israelachvili, J.: Shear alignment of confined hydrocarbon liquid films. Phys. Rev. E 66(1), 011705 (2002).
74Akbulut, M., Chen, N., Maeda, N., Israelachvili, J.N., Grunewald, T. and Helm, C.A.: Crystallization in thin liquid films induced by shear. J. Phys. Chem. B 109, 12509 (2005).
75Muller, C., Machtle, P. and Helm, C.A.: Enhanced absorption within a cavity—A study of thin dye layers with the surface forces apparatus. J. Phys. Chem. 98, 11119 (1994).
76Machtle, P., Muller, C. and Helm, C.A.: A Thin absorbing layer at the center of a Fabry-Perot-interferometer. J. de Physique II 4(3), 481 (1994).
77Grunewald, T., Dahne, L. and Helm, C.A.: Supersaturation and crystal nucleation in confined geometries. J. Phys. Chem. B 102, 4988 (1998).
78Drummond, C. and Israelachvili, J.: Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33, 4910 (2000).
79Drummond, C. and Israelachvili, J.: Dynamic phase transitions in confined lubricant fluids under shear. Phys. Rev. E 63, 041506 (2001).
80Mukhopadhyay, A., Zhao, J., Bae, S.C. and Granick, S.: Contrasting friction and diffusion in molecularly thin confined films. Phys. Rev. Lett. 89, 136103 (2002).
81Chang, K.C. and Hammer, D.A.: Adhesive dynamics simulations of sialyl-Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys. J. 79, 1891 (2000).
82Israelachvili, J.N. and Adams, G.E.: Measurement of forces between 2 mica surfaces in aqueous-electrolyte solutions in range 0–100 nm. J. Chem. Soc., Faraday Transactions 1 74, 975 (1978).
83Binnig, G., Quate, C.F. and Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).
84Mangipudi, V., Tirrell, M. and Pocius, A.V.: Direct measurement of the surface-energy of corona-treated polyethylene using the surface forces apparatus. Langmuir 11, 19 (1995).
85Tirrell, M.: Measurement of interfacial energy at solid polymer surfaces. Langmuir 12, 4548 (1996).
86Israelachvili, J.N.: Thin-film studies using multiple-beam interferometry. J Colloid. Interf. Sci. 44, 259 (1973).
87Homola, A.M., Israelachvili, J.N., Gee, M.L. and Mcguiggan, P.M.: Measurements of and relation between the adhesion and friction of 2 surfaces separated by molecularly thin liquid-films. J. Tribol. T. ASME 111, 675 (1989).
88Homola, A.M., Israelachvili, J.N., Mcguiggan, P.M. and Gee, M.L.: Fundamental experimental studies in tribology—The transition from interfacial friction of undamaged molecularly smooth surfaces to normal friction with wear. Wear 136, 65 (1990).
89Ruths, M., Alcantar, N.A. and Israelachvili, J.N.: Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J. Phys. Chem. B 107, 11149 (2003).
90Zhu, Y. and Granick, S.: Reassessment of solidification in fluids confined between mica sheets. Langmuir 19, 8148 (2003).
91Yoshizawa, H., Chen, Y.L. and Israelachvili, J.: Fundamental mechanisms of interfacial friction.1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128 (1993).
92Israelachvili, J.N., Gee, M.L., McGuiggan, P., Thompson, P., and Robbins, M.: Melting-freezing transitions in molecularly thin liquid films during shear, in Dynamics in Small Confining Systems, edited by Drake, J.M., Klafter, J., and Kopelman, R. (Mater. Res. Soc. Symp. Proc. EA–22, Pittsburgh, PA, 1990), p. 3.


Effects of Sub-ångstrom (pico-scale) Structure of Surfaces on Adhesion, Friction, and Bulk Mechanical Properties

  • Jacob Israelachvili (a1), Nobuo Maeda (a2), Kenneth J. Rosenberg (a3) and Mustafa Akbulut (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.