Skip to main content Accessibility help

Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites

  • Caiju Li (a1), Xiaoqing Liu (a1), Jianhong Yi (a1), Long Teng (a1), Rui Bao (a1), Jun Tan (a1), Chao Yang (a1) and Zhou Zou (a1)...


By using high purity aluminum powders and multi-walled carbon nanotubes (MWCNTs) as raw materials, MWCNTs/Al composites were fabricated with ball milling, followed by cold pressing, vacuum sintering, and hot extrusion. It was found that when the sintering temperature was 863 K, MWCNTs/Al composite sintered for 4 h showed good comprehensive properties, and its tensile strength and elongation reached to 156 MPa and 21%, respectively. The comprehensive mechanical properties of the composites became better with raising sintering temperature when the sintering time was 4 h. When the sintering temperature raised to 923 K, the tensile strength of the composite reached to 167 MPa which is three times more than that of annealed high purity aluminum, mainly due to the higher density and better interface bonding resulted from higher sintering temperature. CNTs' pulling out were observed obviously in the fractured surfaces, and load transfer may be the main strengthening mechanism.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Wang, Z., Qu, R.T., Scudino, S., Sun, B.A., Prashanth, K.G., Louzguine-Luzgin, D.V., Chen, M.W., Zhang, Z.F., and Eckert, J.: Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 7(12), e229 (2015).
2. Bakshi, S., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55(1), 41 (2010).
3. Teng, L., Li, C.J., Yuan, Q., Zhang, Q.X., Xi, Y., Li, C.H., Bao, R., and Zhu, X.K.: Progress of carbon nanotubes reinforced copper matrix composites. Mater. Rev. 28(7), 16 (2014).
4. Agarwal, A., Bakshi, S.R., and Lahiri, D.: Carbon Nanotubes Reinforced Metal Matrix Composites (CRC Press, New York, 2010).
5. Laha, T., Chen, Y., Lahiri, D., and Agarwal, A.: Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites, Part A 40(5), 589 (2009).
6. Bal, S. and Samal, S.S.: Carbon nanotube reinforced polymer composites—A state of the art. Bull. Mater. Sci. 30(4), 379 (2007).
7. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forró, L., Benoit, W., and Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A. 69(3), 255 (1999).
8. Iijima, S., Brabec, C., Maiti, A., and Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089 (1996).
9. Ajayan, P.M. and Tour, J.M.: Materials science—Nanotube composites. Nature 447(7148), 1066 (2007).
10. Moghadam, A.D., Omrani, E., Menezes, P.L., and Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Composites, Part B 77, 402 (2015).
11. Kwon, H., Lee, G.G., Kim, S.G., Lee, B.W., Seo, W.C., and Leparoux, M.: Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials. Mater. Sci. Eng., A 632, 72 (2015).
12. Park, J.G., Dong, H.K., and Lee, Y.H.: Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95, 690 (2015).
13. Bradbury, C.R., Gomon, J.K., Kollo, L., Kwon, H., and Leparoux, M.: Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloys Compd. 585(3), 362 (2014).
14. Trinh Pham, V., Bui, H.T., Tran, B.T., Nguyen, V.T., Le, D.Q., Than, X.T., Nguyen, V.C., Doan, D.P., and Phan, N.M.: The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 015006 (2011).
15. Hao, X.N., Zhang, H.P., Zheng, R.X., Zhang, Y.T., Ameyama, K., and Chao-Li, M.A.: Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders. Trans. Nonferrous Met. Soc. China 24(7), 2380 (2014).
16. Pérez-Bustamante, R., Estrada-Guel, I., Antúnez-Flores, W., Miki-Yoshida, M., Ferreira, P.J., and Martínez-Sánchez, R.: Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450(1–2), 323 (2008).
17. Liu, Z.Y., Xu, S.J., Xiao, B.L., Xue, P., Wang, W.G., and Ma, Z.Y.: Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Composites, Part A 43(12), 2161 (2012).
18. Chandran, P., Sirimuvva, T., Nayan, N., Shukla, A.K., Murty, S.V.S.N., Pramod, S.L., Sharma, S.C., and Bakshi, S.R.: Effect of carbon nanotube dispersion on mechanical properties of aluminum–silicon alloy matrix composites. J. Mater. Eng. Perform. 23(3), 1028 (2014).
19. Mazaheri, M., Hassanzadeh-Tabrizi, S.A., and Sadrnezhaad, S.K.: Hot pressing of nanocrystalline zinc oxide compacts: Densification and grain growth during sintering. Ceram. Int. 35(3), 991 (2008).
20. Pérez-Bustamante, R., Estrada-Guel, I., Amézaga-Madrid, P., Miki-Yoshida, M., Herrera-Ramírez, J.M., and Martínez-Sánchez, R.: Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. Mater. Sci. Eng., A 495(2), 399 (2010).
21. Sridhar, I. and Narayanan, K.R.: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44(7), 1750 (2009).
22. Ci, L., Ryu, Z., Jin-Phillipp, N.Y., and Rühle, M.: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54(20), 5367 (2006).
23. Pérez-Bustamante, R., Gómez-Esparza, C.D., Estrada-Guel, I., Miki-Yoshida, M., Licea-Jiménez, L., Pérez-García, S.A., and Martínez-Sánchez, R.: Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Mater. Sci. Eng., A 502(1–2), 159 (2009).
24. Li, Z., Jiang, L., Fan, G., Xu, Y., Zhang, D., Chen, Z., and Humphries, S.: High volume fraction and uniform dispersion of carbon nanotubes in aluminium powders. Micro Nano Lett. 5(6), 379 (2010).
25. Wang, Z., Georgarakis, K., Nakayama, K.S., Li, Y., Tsarkov, A.A., Xie, G., Dudina, D., Louzguine-Luzgin, D.V., and Yavari, A.R.: Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 6, 24384 (2016).
26. Housaer, F., Beclin, F., Touzin, M., Tingaud, D., Legris, A., and Addad, A.: Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater. Charact. 110, 94 (2015).
27. Zhu, X., Zhao, Y-G., Wu, M., Wang, H-Y., and Jiang, Q-C.: Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes. J. Alloys Compd. 674, 145 (2016).
28. Choi, H.J., Shin, J.H., and Bae, D.H.: The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Composites, Part A 43(7), 1061 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed