Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T11:30:21.172Z Has data issue: false hasContentIssue false

Effects of pressure on the solidification of Al–Mn alloy

Published online by Cambridge University Press:  31 January 2011

Duanwei He
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, Beijing 100084, People's Republic of China, and Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
M. He
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
C. S. Kiminami
Affiliation:
Departmento de Engenhari de Materials, Universidade Federal Sao Carlos-sp-Brazil
F. X. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Y. F. Xu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
W. K. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
K. H. Kuo
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, Beijing 100084, People's Republic of China, and Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Get access

Abstract

The solidification of Al–20 wt% Mn alloy was investigated under pressures up to 6 GPa. It was found that the solidification products under pressures below 4 Gpa were about the same, composed mainly of Al and Al6Mn. A new Al–Mn phase with needle like morphology and Al nanocrystallites in size less than 20 nm were obtained in the quenched alloy at 6 GPa. Structure analysis by transmission electron microscopy and x-ray diffraction indicated that the new phase had a C-center othorhombic unit cell with lattice constants of a = 0.7565(4) nm, b = 1.2965(6) nm, and c = 0.7801(6) nm. The composition was determined to be Al77.5Mn22.5 by election probe microanalysis. The phase evolution during solidification under different pressures was discussed. Our experimental results show that the pressure, as a basic thermodynamic variable like temperature, may play an important role on the solidification of the alloy.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cannon, J.F., J. Phys. Chem. Ref. Data 3, 781 (1974).CrossRefGoogle Scholar
2.Sekhar, J.A., Mohan, M., Divakar, C., and Singh, A.K., Scripta Metall. 18, 1327 (1984).CrossRefGoogle Scholar
3.He, D.W., Zhang, F.X., Zhang, M., Liu, R.P., Qin, Z.C., Xu, Y.F., and Wang, W.K., Appl. Phys. Lett. 71, 3811 (1997).CrossRefGoogle Scholar
4.Chun, P.L. and Wand, T.G., J. Appl. Phys. 71, 5721 (1992).Google Scholar
5.He, D.W., Zhang, F.X., Yu, W., Zhang, M., Liu, R.P., and Wang, W.K., J. Appl. Phys. 83, 5003 (1998).CrossRefGoogle Scholar
6.He, D.W., Zhang, F.X., Zhang, M., Liu, R.P., Xu, Y.F., and Wang, W.K., Cryst. Res. Technol. 33, 43 (1998).3.0.CO;2-7>CrossRefGoogle Scholar
7.Wang, W.K., Iwasaki, H., Suryanarayana, C., and Masumoto, T., J. Mater. Sci. 18, 3765 (1983).CrossRefGoogle Scholar
8.Xu, Y., Huang, X., and Wang, W.i, Appl. Phys. Lett. 56, 1957 (1990).CrossRefGoogle Scholar
9.Sekhar, J.A. and Rajasekharan, T., Nature (London) 320, 153 (1986).CrossRefGoogle Scholar
10.McAlister, A.J. and Murray, J.L., in Binary Alloy Phase Diagrams, edited by Massalski, T.B. (ASM International, 1990), p. 172.Google Scholar
11.Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
12.Bendersky, L., Phys. Rev. Lett. 55, 1461 (1985).CrossRefGoogle Scholar
13.Taylor, M.A., Acta Crystallogr. 12, 393 (1959).CrossRefGoogle Scholar
14.Taylor, M.A., Acta Metall. 8, 256 (1960).CrossRefGoogle Scholar
15.Kontio, A. and Coppens, P., Acta Crystallogr. B 37, 433 (1981).CrossRefGoogle Scholar
16.Li, X.Z., Shi, D., and Kuo, K.H., Philos. Mag. B 56, 331 (1992).CrossRefGoogle Scholar
17.Hu, J.J. and Ryder, P.L., Philos. Mag. B69, 671 (1994).CrossRefGoogle Scholar
18.Shoemaker, C.B., Phys. Rev. B 38, 8511 (1988).CrossRefGoogle Scholar
19.Li, X.Z. and Kuo, K.H., Philos. Mag. B 65, 525 (1992).CrossRefGoogle Scholar
20.Kreiner, G. and Franzen, H.F., J. Alloys Comp. 261, 83 (1997).CrossRefGoogle Scholar
21.Murray, J.L., Mcalister, A.J., Schaefer, R.J., Bendersky, L.A., Biancaniello, F.S., and Moffat, D.L., Metall. Trans. 18A, 385 (1987).CrossRefGoogle Scholar
22.He, M., He, D.W., and Zhang, F.X. (unpublished).Google Scholar
23.Sharma, S.M. and Sikka, S.K., Prog. Mater. Sci. 40, 1 (1996).CrossRefGoogle Scholar
24.Lees, J., J. Williamson, B.H., Nature (London) 208, 278 (1965).CrossRefGoogle Scholar
25.Rapoport, E. and Kennedy, G.C., J. Phys. Chem. Solids 27, 93 (1966).CrossRefGoogle Scholar
26.Wang, W.H., He, D.W., Zhao, D. Q., Yao, Y.S., and He, M., Appl. Phys. Lett. 75, 2770 (1999).CrossRefGoogle Scholar
27.Schilling, J.S., J. Phys. Chem. Solids 59, 553 (1997).CrossRefGoogle Scholar
28.Mao, H., Special Issue of the Review of High Pressure Science and Technology 3, 8 (1994).Google Scholar
29.Sung, C-M., High Temp.–High Press. 29, 253 (1997).CrossRefGoogle Scholar