Skip to main content Accessibility help
×
Home

Effects of position, thickness, and annealing temperature of Ag buffer layer on the shape of ZnO nanocrystals grown by a simple hydrothermal process

  • Baojia Li (a1), Lijing Huang (a1), Ming Zhou (a2) and Naifei Ren (a3)

Abstract

In this paper, we report on the well-aligned zinc oxide (ZnO) nanorods synthesized on Ag buffer layer/glass substrate using a modified hydrothermal method, which adopts the strategy of Ag layer facing down. The effects of position, thickness, and annealing temperature of Ag layer on the shape of ZnO nanocrystals were systematically investigated. It was found that the diameter and length of ZnO nanorods decrease with the Ag layer height up to 12 mm, above which no obvious decrease was observed. Oppositely, the density, diameter, and length of ZnO rods all increase with an increase in the Ag layer thickness, except that the length becomes constant above a critical thickness of 60 nm. In addition, when the Ag layer annealing temperature increases from 300 to 400 °C, the nanorod density decreases, the diameter increases, and the length remains nearly invariable, respectively. Surprisingly, randomly inclined nanorods with two different diameters dispersedly coexist on the Ag layer that was annealed at 500 °C. This work may provide an effective approach for the shape control in ZnO-based applications.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: bjia_li@126.com

References

Hide All
1.Chu, S., Olmedo, M., Yang, Z., Kong, J., and Liu, J.: Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 181106 (2008).
2.Wang, M., Fei, G.T., and Zhang, L.D.: Porous-ZnO-nanobelt film as recyclable photocatalysts with enhanced photocatalytic activity. Nanoscale Res. Lett. 5, 1800 (2010).
3.Wang, L.W., Kang, Y.F., Liu, X.H., Zhang, S.M., Huang, W.P., and Wang, S.R.: ZnO nanorod gas sensor for ethanol detection. Sens. Actuators, B 162, 237 (2012).
4.Bao, J.M., Zimmler, M.A., and Capasso, F.: Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719 (2006).
5.Unalan, H.E., Wei, D., Suzuki, K., Dalal, S., Hiralal, P., Matsumoto, H., Imaizumi, S., Minagawa, M., Tanioka, A., Flewitt, A.J., Milne, W.I., and Amaratunga, G.A.J.: Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008).
6.Yang, L.L., Zhao, Q.X., Willander, M., and Yang, J.H.: Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition. J. Cryst. Growth 311, 1046 (2009).
7.Xu, C.X., Sun, X.W., Dong, Z.L., Yu, M.B., My, T.D., Zhang, X.H., Chua, S.J., and White, T.J.: Zinc oxide nanowires and nanorods fabricated by vapour-phase transport at low temperature. Nanotechnology 15, 839 (2004).
8.Wang, B., Jin, X., Ouyang, Z.B., and Xu, P.: Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation. Appl. Phys. A 108, 195 (2012).
9.Yan, X.D.N., Li, Z., Chen, R., and Gao, W.: Template growth of ZnO nanorods and microrods with controlled densities. Cryst. Growth Des. 8, 2406 (2008).
10.Bhat, D.K.: Facile synthesis of ZnO nanorods by microwave irradiation of zinc–hydrazine hydrate complex. Nanoscale Res. Lett. 3, 31 (2008).
11.Baruah, S. and Dutta, J.: pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth 311, 2549 (2009).
12.Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y., Saykally, R.J., and Yang, P.: Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42, 3031 (2003).
13.Akgun, M.C., Afal, A., and Unalan, H.E.: Hydrothermal zinc oxide nanowire growth with different zinc salts. J. Mater. Res. 27, 2401 (2012).
14.Ohara, S., Mousavand, T., Sasaki, T., Umetsu, M., Naka, T., and Adschiri, T.: Continuous production of fine zinc oxide nanorods by hydrothermal synthesis in supercritical water. J. Mater. Sci. 43, 2393 (2008).
15.Akhavan, O., Mehrabian, M., Mirabbaszadeh, K., and Azimirad, R.: Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J. Phys. D: Appl. Phys. 42, 225305 (2009).
16.Liu, S.Y., Chen, T., Wan, J., Ru, G.P., Li, B.Z., and Qu, X.P.: The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method. Appl. Phys. A 94, 775 (2009).
17.Kim, A.R., Lee, J.Y., Jang, B.R., Kim, H.S., Park, H.K., Cho, Y.J., and Jang, N.W.: Effect of post annealing of ZnO buffer layer on the properties of hydrothermally grown ZnO nanorods. Jpn. J. Appl. Phys. 49, 06GH10 (2010).
18.Unalan, H.E., Hiralal, P., Kuo, D., Parekh, B., Amaratunga, G., and Chhowalla, M.: Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J. Mater. Chem. 18, 5909 (2008).
19.Chung, T.F., Zapien, J.A., and Lee, S.T.: Luminescent properties of ZnO nanorod arrays grown on Al:ZnO buffer layer. J. Phys. Chem. C 112, 820 (2008).
20.Chang, S.Y., Yang, N.H., and Huang, Y.C.: Hydrothermal growth and interface correlation of highly aligned ZnO nanorod arrays on UV-activated sol-gel transparent conducting films. J. Electrochem. Soc. 156, K200 (2009).
21.Lee, H.K., Kim, M.S., and Yu, J.S.: Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass. Nanotechnology 22, 445602 (2011).
22.Zou, C.W. and Gao, W.: Microstructure and mechanical properties of ZnO films on silicon substrate with ITO buffer layer. Int. J. Mod. Phys. B 23, 1764 (2009).
23.Nozaki, S., Sarangi, S.N., Sahu, S.N., and Uchida, K.: Selective growth of ZnO nanorods by the hydrothermal technique. Adv. Nat. Sci. 4, 015008 (2013).
24.Yu, H.D., Zhang, Z.P., Han, M.Y., Hao, X.T., and Zhu, F.R.: A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 127, 2378 (2005).
25.Muster, T.H., Neufeld, A.K., and Cole, I.S.: The protective nature of passivation films on zinc: Wetting and surface energy. Corros. Sci. 46, 2337 (2004).
26.Xu, F., Lu, Y., Xie, Y., and Liu, Y.: Synthesis and photoluminescence of assembly-controlled ZnO architectures by aqueous chemical growth. J. Phys. Chem. C 113, 1052 (2009).
27.Trushin, O.S., Kokko, K., and Salo, P.T.: Film-substrate interface mixing in the energetic deposition of Ag on Cu(001). Surf. Sci. 442, 420 (1999).
28.Tong, Y., Liu, Y., Dong, L., Zhao, D., Zhang, J., Lu, Y., Shen, D., and Fan, X.: Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 110, 20263 (2006).
29.Fan, F.R., Ding, Y., Liu, D.Y., Tian, Z.Q., and Wang, Z.L.: Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 131, 12036 (2009).
30.Liu, X., Wu, X., Cao, H., and Chang, R.P.H.: Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 (2004).
31.Liu, X.X., Jin, Z.G., Bu, S.J., Zhao, J., and Liu, Z.F.: Effect of buffer layer on solution deposited ZnO films. Mater. Lett. 59, 3994 (2005).
32.Park, S.H., Lee, Y.B., Kwak, C.H., Seo, S.Y., Kim, S.H., Choi, Y.D., and Han, S.W.: Structural and optical properties of nitrogen-ion-implanted ZnO nanorods. J. Korean Phys. Soc. 52, 954 (2008).
33.de Moura, A.P., Lima, R.C., Moreira, M.L., Volanti, D.P., Espinosa, J.W.M., Orlandi, M.O., Pizani, P.S., Varela, J.A., and Longo, E.: ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics 181, 775 (2010).
34.Chang, R.F., Levelt Sengers, J.M.H., Doiron, T., and Jones, J.: Gravity-induced density and concentration profiles in binary mixtures near gas-liquid critical lines. J. Chem. Phys. 79, 3058 (1983).
35.Sun, X.M., Chen, X., Deng, Z.X., and Li, Y.D.: A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 78, 99 (2002).
36.Akguna, M.C., Kalaya, Y.E., and Unalana, H.E.: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 1445 (2012).
37.Tsai, J.K., Shih, J.H., Wu, T.C., and Meen, T.H.: n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes. Nanoscale Res. Lett. 7, 664 (2012).
38.Kim, A.R., Lee, J.Y., Jang, B.R., Kim, H.S., Cho, Y.J., Park, H.K., Jang, N.W., and Kim, J.H.: Effect of buffer layer thickness on the growth properties of hydrothermally grown ZnO nanorods. J. Nanosci. Nanotechnol. 11, 1409 (2011).
39.Kim, D.C., Kong, B.H., Cho, H.K., Park, D.J., and Lee, J.Y.: Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition. Nanotechnology 18, 015603 (2007).
40.Zhao, X.Q., Kim, C.R., Lee, J.Y., Heo, J.H., Shin, C.M., Ryu, H., Chang, J.H., Lee, H.C., Son, C.S., Lee, W.J., Jung, W.G., Tan, S.T., Zhao, J.L., and Sun, X.W.: Effects of buffer layer annealing temperature on the structural and optical properties of hydrothermal grown ZnO. Appl. Surf. Sci. 255, 4461 (2009).
41.Bae, Y.S., Kim, D.C., Ahn, C.H., Kim, J.H., and Cho, H.K.: Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surf. Interface Anal. 42, 978 (2010).
42.Shim, J.B., Chang, H., and Kim, S.O.: Rapid hydrothermal synthesis of zinc oxide nanowires by annealing methods on seed layers. J. Nanomater. 2011, 582764 (2011).
43.Cho, M.Y., Kim, M.S., Choi, H.Y., Yim, K.G., and Leem, J.Y.: Post-annealing effects on properties of ZnO nanorods grown on Au seed layers. Bull. Korean Chem. Soc. 32, 880 (2011).
44.Weigand, C.C., Skåre, D., Ladam, C., Grepstad, J., and Weman, H.: Effects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures. Nanoscale Res. Lett. 6, 566 (2011).
45.Song, J. and Lim, S.: Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C 111, 596 (2007).
46.Cavalcante, L.S., Marques, V.S., Sczancoski, J.C., Escote, M.T., Joya, M.R., Varela, J.A., Santos, M.R.M.C., Pizani, P.S., and Longo, E.: Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces. Chem. Eur. J. 143, 299 (2008).
47.Wang, G., Shi, C., Zhao, N., and Du, X.: Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition. Mater. Lett. 61, 3795 (2007).
48.Sato, M., Hara, H., Kuritani, H., and Nishide, T.: Novel route to Co3O4 thin films on glass substrates via N-alkyl substituted amine salt of Co(III)-EDTA complex. Sol. Energy Mater. Sol. Cells 45, 43 (1997).
49.da Silva, L.F., Maia, L.J.Q., Bernardi, M.I.B., Andres, J.A., and Mastelaro, V.R.: An improved method for preparation of SrTiO3 nanoparticles. Mater. Chem. Phys. 125, 168 (2011).
50.Lu, X.H., Wang, D., Li, G.R., Su, C.Y., Kuang, D.B., and Tong, Y.X.: Controllable electrochemical synthesis of hierarchical ZnO nanostructures on FTO glass. J. Phys. Chem. C 113, 13574 (2009).
51.Unalan, H.E., Hirala, P., Rupesinghe, N., Dalal, S., Milne, W.I., and Amaratunga, G.A.J.: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608 (2008).
52.Pankove, J.I.: Optical Processes in Semiconductors (Prentice Hall, Inc., New Jersey, 1971), p. 34.
53.Cavalcante, L.S., Simões, A.Z., Espinosa, J.W.M., Santos, L.P.S., Longo, E., Varela, J.A., and Pizani, P.S.: Study of structural evolution and photoluminescent properties at room temperature of Ca(Zr,Ti)O3 powders. J. Alloys Compd. 464, 340 (2008).

Keywords

Related content

Powered by UNSILO

Effects of position, thickness, and annealing temperature of Ag buffer layer on the shape of ZnO nanocrystals grown by a simple hydrothermal process

  • Baojia Li (a1), Lijing Huang (a1), Ming Zhou (a2) and Naifei Ren (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.