Skip to main content Accessibility help

The effects of low temperature and pressure on the fracture behaviors of organosilicate thin films

  • Soheil Barakat (a1), Pearl Lee-Sullivan (a1), Steven A. Vitale (a2) and Ting Y. Tsui (a3)


A novel load–displacement sensing instrument has been designed and fabricated to characterize the fracture properties of brittle thin films at low temperature (approximately −30 °C) and pressure (1.6e-4 Pa) environments. In this study, the instrument was used to investigate the effects of harsh environments on the fracture behaviors of organosilicate glass (OSG) and silicon carbonitride (SiCN) thin films under four-point bend loading. Experimental results showed that the fracture strengths of film stacks are the highest when the environment contains a very low water molecule concentration. This condition can be achieved by purging the testing chamber with pure nitrogen or reducing the chamber pressure to less than 1 Pa. In contrast, cracks propagated readily along OSG/SiCN interfaces when experiments were performed in deionized water. The effects of low temperature (approximately −30 °C) and pressure on thin film fracture were also studied, and the results demonstrated that there is no observed degradation of the OSG fracture properties. X-ray photoelectron spectroscopy (XPS) technique was used to identify the chemical composition of the fracture surfaces.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.O’Neill, M.L., Haas, M.K., Peterson, B.K., Vrtis, R.N., Weigel, S.J., Wu, D., Bitner, M.D., and Karwacki, E.J.: Impact of pore size and morphology of porous organosilicate glasses on integrated circuit manufacturing, in Technology and Reliability of Low-k Dielectrics and Copper Interconnects, edited by Tsui, T.Y., Joo, Y.C., Michaelson, L., Lane, M., and Volinsky, A.A. (Mater. Res. Soc. Symp. Proc., Vol. 914, Materials Research Society, Warrendale, PA, 2006), pp. 314.
2.Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., and Yanovitskaya, Z.S.: Low-dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).
3.Morgen, M., Ryan, E.T., Zhao, J.H., Hu, C., Cho, T., and Ho, P.S.: Low-dielectric constant materials for ULSI interconnects. Annu. Rev. Mater. Sci. 30, 645 (2000).
4.Liniger, E.G. and Cook, R.F.: A controlled flaw technique for lifetime characterization. J. Am. Ceram. Soc. 76, 2123 (1993).
5.Lawn, B.R.: Diffusion-controlled subcritical crack growth in the presence of a dilute gas environment. Mater. Sci. Eng. 13, 277 (1974).
6.Wiederhorn, S.M.: Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50, 407 (1967).
7.Wiederhorn, S.M. and Bolz, L.H.: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53, 543 (1970).
8.Wiederhorn, S.M. and Johnson, H.: Effect of electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56, 192 (1973).
9.Wiederhorn, S.M., Fuller, E.R., and Thomson, R.: Micromechanisms of crack growth in ceramics and glasses in corrosive environments. J. Ment. Sci. 14, 450 (1980).
10.Lawn, B.R.: An atomistic model of kinetic crack growth. J. Mater. Sci. 10, 469 (1975).
11.Cook, R.F. and Liniger, E.G.: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electromech. Soc. 146, 4439 (1999).
12.Kook, S.Y. and Dauskardt, R.H.: Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293 (2002).
13.Lane, M., Dauskardt, R., Ma, Q., Fujimoto, H., and Krishna, N.: Subcritical debonding of multilayer interconnect structures: Temperature and humidity effects, in Materials Realibility in Microelectronics IX, edited by Volkert, C.A., Verbruggen, A.H., and Brown, D.D. (Mater. Res. Soc. Symp. Proc., Vol. 563, Warrendale, PA, 1999), pp. 251256.
14.Lane, M.W., Snodgrass, J.M., and Dauskardt, R.H.: Environmental effects on interfacial adhesion. Microelectron. Reliab. 41, 1615 (2001).
15.Hutchinson, J.W. and Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992).
16.Liu, X.H., Suo, Z., Ma, Q., and Fujimoto, H.: Developing design rules to avert cracking and debonding in integrated circuit structures. Eng. Fract. Mech. 66, 387 (2000).
17.Ambrico, J.M., Jones, E.E., and Begley, M.R.: Cracking in thin multi-layers with finite-width and periodic architectures. Int. J. Solids Struct. 39, 1443 (2002).
18.Liu, X.H., Shaw, T.M., Lane, M.W., Rosenberg, R.R., Lane, S.L., Doyle, J.P., Restaino, D., Vogt, S.F., and Edelstein, D.C.: Channel cracking in low-k films on patterned multi-layers, in Interconnect Technology Conference, June 7–9, 2004, Proceedings of the IEEE 2004 International, pp. 9395 (2004).
19.Vlassak, J.J.: Channel cracking in thin films on substrates of finite thickness. Int. J. Fract. 119, 299 (2003).
20.Vlassak, J.J., Lin, Y., and Tsui, T.Y.: Fracture of organosilicate glass thin films: Environmental effects. Mater. Sci. Eng., A 391, 159 (2005).
21.Guyer, E.P., Patz, M., and Dauskardt, R.H.: Fracture of nanoporous methyl silsesquioxane thin-film glasses. J. Mater. Res. 21, 882 (2006).
22.Lin, Y., Tsui, T.Y., and Vlassak, J.J.: Water diffusion and fracture in organosilicate glass film stacks. Acta Mater. 55, 2455 (2007).
23.Li, H., Lin, Y., Tsui, T.Y., and Vlassak, J.J.: The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates. J. Mater. Res. 24, 107 (2009).
24.Lin, Y., Xiang, Y., Tsui, T.Y., and Vlassak, J.J.: PECVD low-permittivity organosilicate glass coatings: Adhesion, fracture, and mechanical properties. Acta Mater. 56, 4932 (2008).
25.Maidenberg, D.A., Volksen, W., Miller, R.D., and Dauskardt, R.H.: Toughening of nanoporous glasses using porogen residuals. Nat. Mater. 3, 464 (2004).
26.Iacopi, F., Tavaly, Y., Eyckens, B., Waldfried, C., Abell, T., Guyer, E.P., Gage, D.M., Dauskardt, R.H., Sajavaara, T., Houthoofd, K., Grobet, P., Jacobs, P., and Maex, K.: Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation. J. Appl. Phys. 99, 053511 (2006).
27.Smith, R.S., Tsui, T.Y., and Ho, P.S.: Effects of ultraviolet radiation on ultra-low-dielectric constant thin film fracture properties. J. Mater. Res. 24(9), 2795 (2008).
28.Merrill, C.C. and Ho, P.S.: Effect of mode-mixity and porosity on interfacial fracture of low-k dielectrics, in Technology and Reliability for Advanced Interconnects and Low-k Dielectrics, edited by Carter, R.J., HauRiege, C.S., Lu, T.M., and Schulz, S.E. (Mater. Res. Soc. Symp. Proc., Vol. 812, Warrendale, PA, 2004), pp. 6166.
29.Tsui, T.Y., McKerrow, A.J., and Vlassak, J.J.: The effect of water diffusion on the adhesion of organosilicate glass film stacks. J. Mech. Phys. Solids 54, 887 (2006).
30.Guyer, E.P. and Dauskardt, R.H.: Effects of solution pH on the accelerated cracking of nanoporous thin-film glasses. J. Mater. Res. 20, 680 (2005).
31.Lin, Y., Vlassak, J.J., Tsui, T.Y., and McKerrow, A.J.: Environmental effects on subcritical delamination of dielectric and metal films from organosilicate glass (OSG) thin films, in Materials, Technology, and Reliability for Advanced Interconnects and Low-k Dielectrics, edited by McKerrow, A.J., Leu, J., and Kraft, O. (Mater. Res. Soc. Symp. Proc., Vol. 766, Warrendale, PA, 2003), pp. 171176.
32.Matos, P.P.L., McMeeking, R.M., Charalambides, P.G., and Drory, M.D.: A method for calculating stress intensities in bimaterial fracture. Int. J. Fract. 40, 235 (1989).
33.Charalambides, P.G., Cao, H.C., Lund, J., and Evans, A.G.: Development of a test method for measuring the mixed-mode fracture resistance of bimaterial interfaces. Mech. Mater. 8, 269 (1990).
34.Ma, Q., Fujimoto, H., Flinn, P., Jain, V., Adibi-Rizi, F., Moghadam, F., and Dauskardt, R.H.: Quantitative measurement of interface fracture energy in multi-layer thin film structures, in Materials Reliability in Microelectronics V, edited by Filter, W.F., Gadepally, K., Greer, A.L., Oates, A.S., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc., Vol. 391, Warrendale, PA, 1995), pp. 9196.
35.Ma, Q.: A four-point bending technique for studying subcritical crack growth in thin films and at interfaces. J. Mater. Res. 12, 840 (1997).
36.Steinherz, H.: Handbook of High Vacuum Engineering (Reinhold Publishing Corp., New York, 1963).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed