Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-22T09:20:36.775Z Has data issue: false hasContentIssue false

Effects of lanthanum modification on rhombohedral Pb(Zr1−xTix)O3 ceramics: Part I. Transformation from normal to relaxor ferroelectric behaviors

Published online by Cambridge University Press:  31 January 2011

Xunhu Dai
Affiliation:
Department of Materials Sciences and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Z. Xu
Affiliation:
Department of Materials Sciences and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Jie-Fang Li
Affiliation:
Department of Materials Sciences and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Dwight Viehland
Affiliation:
Department of Materials Sciences and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

The interruption of long-range polar order in rhombohedral ferroelectricPb(Zr1−xTix)O3 (PZT) ceramics has been systematically studied by incorporating La onto the A-site of the perovskite (ABO3) structure for Zr/Ti ratios of 65/35 and 80/20 and various La contents. Studies have been performed by hot-stage transmission electron microscopy, dielectric spectroscopy, and Sawyer–Tower polarization (P-E) techniques. The evolution of a polar nanodomain state from a normal micron-sized domain state with increasing La content was observed. The emergence of this polar cluster state was characterized by the onset of strong frequency dispersion in the dielectric response, indicative of relaxor behavior. The La content that drives the structure into the relaxor state was found to be related to the lattice distortion of the undoped base composition.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Haertling, G. and Land, C., J. Am. Ceram. Soc. 54, 1 (1971).CrossRefGoogle Scholar
2.Lines, M.E. and Glass, M., Principle and Applications of Ferro-electrics and Related Materials (Clarendon, Oxford, 1977).Google Scholar
3.Haertling, G., Ferroelectrics 75, 25 (1987).CrossRefGoogle Scholar
4.Hennings, D. and Hardtl, K.H., Phys. Status Solidi A 33, 465 (1970).CrossRefGoogle Scholar
5.Thomas, N. W., J. Phys. Chem. Solids 51, 1419 (1990).CrossRefGoogle Scholar
6.Randall, C., Barber, D., Whatmore, R., and Grove, P., J. Mater. Sci. 21, 4456 (1987).CrossRefGoogle Scholar
7.Cross, L. E., Ferroelectrics 76, 249 (1987).CrossRefGoogle Scholar
8.Viehland, D., Jang, S. J., Cross, L. E., and Wuttig, M., Phys. Rev. B 43, 8316 (1992).CrossRefGoogle Scholar
9.Dai, X. H., DiCiovanni, A., and Viehland, D., J. Appl. Phys. 74, 3399 (1993).CrossRefGoogle Scholar
10.Dai, X. H., Xu, Z., and Viehland, D., Philos. Mag. B 70, 33 (1994).CrossRefGoogle Scholar
11.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971).Google Scholar
12.O'Brian, H. M., J. Am. Ceram. Soc. 56, 387 (1973).Google Scholar
13.Krumins, A., Shiosaki, T., and Koizumi, S., Jpn. J. Appl. Phys. 33, 49401 (1994).CrossRefGoogle Scholar
14.Haun, M., Ph.D. Thesis, Pennsylvania State University (1988).Google Scholar
15.Arlt, G. and Dendericks, H., Ferroelectrics 29, 47 (1980).CrossRefGoogle Scholar
16.Chu, F., Setter, N., and Tagantsev, A. K., J. Appl. Phys. 74, 5129 (1993).CrossRefGoogle Scholar
17.Wadhawan, V., Kernion, M., Kimura, Y., and Newnham, R. E., Ferroelectrics 37, 575 (1981).CrossRefGoogle Scholar
18.Bratkovsky, A. M., Salje, E.K. H., and Heine, H., Phase Transitions 52, 77 (1994).CrossRefGoogle Scholar
19.Rossetti, G. A. Jr., Nishimura, T., and Cross, L. E., J. Appl. Phys. 70, 1630 (1991).CrossRefGoogle Scholar
20.Sawagushi, E., J. Phys. Soc. Jpn. 8, 615 (1953).CrossRefGoogle Scholar
21.Dai, X. H., Xu, Z., Li, J. F., and Viehland, D., J. Appl. Phys. 77, 3354 (1995).CrossRefGoogle Scholar
22.Dai, X. H., Xu, Z., and Viehland, D., J. Am. Ceram. Soc. 78, 2815 (1995).CrossRefGoogle Scholar
23.Xi, Y., Zhili, C., and Cross, L. E., J. Appl. Phys. 54, 3399 (1984).CrossRefGoogle Scholar
24.Xu, Z., Dai, X.H., and Viehland, D., Phys. Rev. B 51, 6261 (1995).CrossRefGoogle Scholar
25.Schmidt, G., Phase Transitions 20, 127 (1990).CrossRefGoogle Scholar
26.Dai, X., Xu, Z., Li, J-F., and Viehland, D., J. Mater. Res. 11, 626 (1996).CrossRefGoogle Scholar