Skip to main content Accessibility help

Effects of grain boundary and boundary inclination on hydrogen diffusion in α-iron

  • Xiaoyang Liu (a1), Wenbo Xie (a1), Weixing Chen (a1) and Hao Zhang (a1)


Diffusion of interstitial hydrogen atoms in α-iron was investigated using molecular dynamic simulation. In particular, hydrogen diffusivities in bulk, on (001) surface and within a Σ5 [100]/(013) symmetric tilt grain boundary (STGB) were estimated in a temperature range of 400 and 700 K. Furthermore, hydrogen diffusivities in a series of Σ5 [100] tilt grain boundaries with different inclinations were also determined as a function of temperature. The inclination dependence of activation energy for diffusion exhibits two local maxima, which correspond to two STGBs. Additional calculation of inclination dependence of boundary energy and boundary specific excess volume shows two local minima at the same STGBs. This suggests hydrogen diffusion into and within a grain boundary might be assisted by grain boundary excess volume and stress. Simulation of effects of hydrostatic pressure on diffusion shows tensile stress can promote hydrogen diffusion in lattice into grain boundary or surface traps, while compressive stress leads to a decrease in diffusivity, and a slower rate of filling these traps.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Steigerwald, E.A., Schaller, F.W., and Troiano, A.R.: The role of stress in hydrogen induced delayed failure. Trans. Am. Inst. Min. Metall. Eng. 218, 832 (1960).
2.Oriani, R.A.: Hydrogen-induced crack-propagation in steels. Bull. Am. Phys. Soc. 19, 219 (1974).
3.Lynch, S.P.: Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 36, 2639 (1988).
4.Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K.: Influence of hydrogen on the stacking-fault energy of an austenitic stainless steel. Mater. Sci. Forum 207209, 93 (1996).
5.Teter, D.F., Robertson, I.M., and Birnbaum, H.K.: The effects of hydrogen on the deformation and fracture of β-titanium. Acta Mater. 49, 4313 (2001).
6.Chen, W., Kania, R., Worthingham, R., and Van Boven, G.: Transgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions: The role of hydrogen. Acta Mater. 57, 6200 (2009).
7.Vennett, R.M. and Ansell, G.S.: Effect of high-pressure hydrogen upon tensile properties and fracture behavior of 304L stainless steel. ASM Trans. Q 60, 242 (1967).
8.Han, G., He, J., Fukuyama, S., and Yokogawa, K.: Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Mater. 46, 4559 (1998).
9.Toplosky, J. and Ritchie, R.O.: On the influence of gaseous hydrogen in decelerating fatigue crack growth rates in ultrahigh strength steels. Scr. Metall. Mater. 15, 905 (1981).
10.Hirth, J.P.: 1980 Institute of Metals Lecture: The Metallurgical Society of AIME—Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11, 861 (1980).
11.Asaoka, T., Daggbert, C., Aucouturier, M., and Galland, J.: Quantitative study on capture of hydrogen in Ferrit Fe-0.15%-Ti using high-resolution autoradiography and degassing at different temperatures. Scr. Metall. Mater. 11, 467 (1977).
12.Asaoka, T., Lapasset, G., Aucouturier, M., and Lacombe, P.: Observation of hydrogen trapping in Fe-0.15wt% Ti alloy by high-resolution autoradiography. Corrosion 34, 39 (1978).
13.Lee, J.Y. and Lee, S.M.: Hydrogen trapping phenomena in metals with BCC and FCC crystal structures by the desorption thermal analysis technique. Surf. Coat. Tech. 28, 301 (1986).
14.Addach, H., Bercot, P., Rezrazi, M., and Wery, M.: Hydrogen permeation in iron at different temperatures. Mater. Lett. 59, 1347 (2005).
15.Castellote, M., Fullea, J., de Viedma, P.G., Andrade, C., Alonso, C., Llorente, I., Turrillas, X., Campo, J., Schweitzer, J.S., Spillane, T., Livingston, R.A., Rolfs, C., and Becker, H-W.: Hydrogen embrittlement of high-strength steel submitted to slow strain rate testing studied by nuclear resonance reaction analysis and neutron diffraction. Nucl. Instrum. Meth. B 259, 975 (2007).
16.Westlake, D.G.: A generalized model for hydrogen embrittlement. ASM Trans. Q 62, 1000 (1969).
17.Gest, R.J. and Troiano, A.R.: Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion 30, 274 (1974).
18.Birnbaum, H.K., and Sofronis, P.: Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mat. Sci. Eng., A 176, 191 (1994).
19.Sofronis, P. and Birnbaum, H.K.: Mechanics of the hydrogen-dislocation-impurity interactions. 1. Increasing shear modulus. J. Mech. Phys. Solids 43, 49 (1995).
20.Takai, K., Shoda, H., Suzuki, H., and Nagumo, M.: Lattice defects dominating hydrogen-related failure of metals. Acta Mater. 56, 5158 (2008).
21.Ramasubramaniam, A., Itakura, M., and Carter, E.A.: Interatomic potentials for hydrogen in α-iron based on density functional theory. Phys. Rev. B 79, 174101 (2009).
22.Desai, S.K., Neeraj, T., and Gordon, P.A.: Atomistic mechanism of hydrogen trapping in bcc Fe–Y solid solution: A first principles study. Acta Mater. 58, 5363 (2010).
23.Movchan, D.N., Shyvanyuk, V.N., Shanina, B.D., and Gavriljuk, V.G.: Atomic interactions and hydrogen-induced γ* phase in fcc iron–nickel alloys. Phys. Status Solidi A 207, 1796 (2010).
24.Yamaguchi, M., Ebihara, K.I., Itakura, M., Kadoyoshi, T., Suzudo, T., and Kaburaki, H.: First-principles study on the grain boundary embrittlement of metals by solute segregation: Part II. Metal (Fe, Al, Cu)-hydrogen (H) systems. Metall. Mater. Trans. A 42A, 330 (2011).
25.Wen, M., Fukuyama, S., and Yokogawa, K.: Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater. 51, 1767 (2003).
26.Taketomi, S., Matsumoto, R., and Miyazaki, N.: Atomistic study of hydrogen distribution and diffusion around a {112} <111> edge dislocation in alpha iron. Acta Mater. 56, 3761 (2008).
27.Hyde, B., Farkas, D., and Caturla, M.J.: Atomistic sliding mechanisms of the Sigma = 5 symmetric tilt grain boundary in bcc iron. Philos. Mag. 85, 3795 (2005).
28.Taketomi, S., Matsumoto, R., and Miyazaki, N.: Atomistic study of the effect of hydrogen on dislocation emission from a mode II crack tip in alpha iron. Int. J. Mech. Sci. 52, 334 (2010).
29.Matsumoto, R., Taketomi, S., Matsumoto, S., and Miyazaki, N.: Atomistic simulations of hydrogen embrittlement. Int. J. Hydrogen Energy 34, 9576 (2009).
30.Manchester, F.D.: Precepts and prospects for phase diagrams of M–H systems. J. Alloy. Compd. 330, 8 (2002).
31.Gottstein, G. and Shvindlerman, L.S.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (Taylor & Francis, Boca Raton, 2010).
32.Zhang, H., Mendelev, M.I., and Srolovitz, D.J.: Mobility of Sigma 5 tilt grain boundaries: Inclination dependence. Scr. Mater. 52, 1193 (2005).
33.Parrinello, M. and Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981).
34.Nose, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255 (1984).
35.Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).
36.Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., and Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83, 3977 (2003).
37.Ackland, G.J., Mendelev, M.I., Srolovitz, D.J., Han, S., and Barashev, A.V.: Development of an interatomic potential for phosphorus impurities in alpha-iron. J. Phys. Condens. Matter 16, S2629 (2004).
38.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
39.Daniel, J.W.: Convergence of conjugate gradient method with computationally convenient modifications. Numer. Math. 10, 125 (1967).
40.Sachdev, S. and Nelson, D.R.: Order in metallic glasses and icosahedral crystals. Phys. Rev. B 32, 4592 (1985).
41.Borodin, V.A.: Local atomic arrangements in polytetrahedral materials. Philos. Mag. A 79, 1887 (1999).
42.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).
43.Brostow, W., Chybicki, M., Laskowski, R., and Rybicki, J.: Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials. Phys. Rev. B 57, 13448 (1998).
44.Rycroft, C.H., Grest, G.S., Landry, J.W., and Bazant, M.Z.: Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 74, 021306 (2006).
45.Shewmon, P.G.: Surface diffusion from a point source. J. Appl. Phys. 34, 755 (1963).
46.Riecke, E., Johnen, B., and Grabke, H.J.: Effects of alloying elements on corrosion and hydrogen uptake of iron in sulfuric acid. 1. Permeation, diffusion and solubility of hydrogen in binary iron alloys. Werkst. Korros. 36, 435 (1985).
47.Riecke, E., Moller, R., Johnen, B., and Grabke, H.J.: Effects of alloying elements on corrosion and hydrogen uptake of iron in sulfuric acid. 2. Corrosion and formation of surface layers. Werkst. Korros. 36, 447 (1985).
48.Riecke, E., Johnen, B., and Grabke, H.J.: Effects of alloying elements on corrosion and hydrogen uptake of iron in sulfuric acid. 3. Kinetics of proton discharge and hydrogen uptake at binary iron alloys. Werkst. Korros. 36, 455 (1985).
49.Beck, W., Bockris, J.O.M., Mcbreen, J., and Nanis, L.: Hydrogen permeation in metals as a function of stress temperature and dissolved hydrogen concentration. Proc. R. Soc. London, Ser. A 290, 220 (1966).
50.Heumann, T. and Domke, E.: Hydrogen diffusion in zone melted α-iron. Ber. Bunsen. Ges. 76, 825 (1972).
51.Quick, N.R. and Johnson, H.H.: Hydrogen and deuterium in iron, 49–506 °C. Acta Metall. 26, 903 (1978).
52.Riecke, E. and Bohnenkamp, K.: On the influence of lattice imperfections in iron on hydrogen diffusion. Z. Metallk. 75, 76 (1984).
53.Gesari, S.B., Pronsato, M.E., and Juan, A.: The electronic structure and bonding of H pairs at Sigma = 5 BCCFe grain boundary. Appl. Surf. Sci. 187, 207 (2002).
54.Kishi, A. and Takano, N.: Effect of hydrogen cathodic charging on fatigue fracture of type 310S stainless steel. J. Phys. Conf. Ser. 240, 012050 (2010).
55.Zhang, L., An, B., Fukuyama, S., Iijima, T., and Yokogawa, K.: Characterization of hydrogen-induced crack initiation in metastable austenitic stainless steels during deformation. J. Appl. Phys. 108, 063526 (2010).
56.Strnadel, B.: Failure of steels caused by hydrogen induced microcracking. Eng. Fract. Mech. 61, 299 (1998).
57.Kang, Y.W., Chen, W.X., Kania, R., Van Boven, G., and Worthingham, R.: Simulation of crack growth during hydrostatic testing of pipeline steel in near-neutral pH environment. Corros. Sci. 53, 968 (2011).


Related content

Powered by UNSILO

Effects of grain boundary and boundary inclination on hydrogen diffusion in α-iron

  • Xiaoyang Liu (a1), Wenbo Xie (a1), Weixing Chen (a1) and Hao Zhang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.