Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T17:08:57.911Z Has data issue: false hasContentIssue false

Effects of electronic and recoil processes in polymers during ion implantation

Published online by Cambridge University Press:  03 March 2011

E. H. Lee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6376
G. R. Rao
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6376
M. B. Lewis
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6376
L. K. Mansur
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6376
Get access

Abstract

It has been shown that ion implantation produces remarkable improvements in surface-sensitive mechanical properties, as well as other physical and chemical properties in polymers. To understand mechanisms underlying such property changes, various polymeric materials were subjected to bombardment by energetic ions in the range of 200 keV to 2 MeV. The magnitude of property changes is strongly dependent upon ion species, energy, and dose. Analysis indicated that hardness and electrical conductivity increased by employing ion species with larger electronic cross sections and with increasing ion energy and dose. The results showed that electronic stopping or linear energy transfer (LET, energy deposited per unit track length per ion) for ionization was the most important factor for the enhancement of hardness, while nuclear stopping or linear energy transfer for displacement generally appeared to reduce hardness.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, E. H., Lewis, M. B., Blau, P. J., and Mansur, L. K., J. Mater. Res. 6, 610 (1991).CrossRefGoogle Scholar
2Lee, E. H., Rao, G. R., and Mansur, L. K., J. Mater. Res. 7, 1900 (1992).CrossRefGoogle Scholar
3Lee, Y., Lee, E. H., and Mansur, L. K., Surf. Coatings Technol. 51, 267 (1992).CrossRefGoogle Scholar
4Lee, E. H., Rao, G. R., Lewis, M. B., and Mansur, L. K., Nucl. Instrum. Methods B74, 326 (1992).Google Scholar
5Venkatesan, T., Nucl. Instrum. Methods B7/8, 461 (1985).CrossRefGoogle Scholar
6Bedell, C. J., Sofield, C. J., Bridwell, L. B., and Brown, I. M., J. Appl. Phys. 67, 1736 (1990).CrossRefGoogle Scholar
7Soaane, D. S. and Martynenko, Z., Polymers in Microelectronics, Chap. 3 (Elsevier, New York, 1989), p. 77.Google Scholar
8Radiation Effects on Polymers, edited by Clough, R. L. and Shalaby, S. W. (American Chemical Society, Washington, DC, 1991).CrossRefGoogle Scholar
9Aoki, Y., Kouchi, N., Shibata, H., Tagawa, S., Tabata, Y., and Imamura, S., Nucl. Instrum. Methods B33, 799 (1988).CrossRefGoogle Scholar
10Chapiro, A., Radiation Chemistry of Polymeric Systems: High Polymers (Interscience Publishers, John Wiley & Sons, New York, 1962), Vol. 15.Google Scholar
11Hioki, T., Noda, S., Sugiura, M., Kakeno, M., Yamada, K., and Kawameto, J., Appl. Phys. Lett. 43, 30 (1983).CrossRefGoogle Scholar
12Costantini, J. M., Flament, J. L., Mori, V., Sinopoli, L., Trochon, J., and Uzureau, J. L., Radiat. Eff. Defects in Solids 115, 83 (1990).CrossRefGoogle Scholar
13Bridwell, L. B., Gied, R. E., Wang, Y. Q., Mohite, S. S., and Jahnke, T., Nucl. Instrum. Methods B56/57, 656 (1991).CrossRefGoogle Scholar
14Charlesby, A., Radiat. Phys. Chem. 40, 117 (1992).Google Scholar
15Radiation Chemistry, Principles and Applications, edited by Farhataziz, and Rodgers, Michael A. J. (VCH Publishers, Inc., New York, 1987).Google Scholar
16The Effects of Radiation on High-Technology Polymers, edited by Reichmanis, E. and O'Donnell, J. H. (American Chemical Society, Washington, DC, 1989).CrossRefGoogle Scholar
17An Introduction to Radiation Chemistry, edited by Spinks, J. W. T. and Woods, R. J. (John Wiley & Sons, Inc., New York, 1990).Google Scholar
18O'Donnell, J. H., The Effects of Radiation on High-Technology Polymers, edited by Reichmanis, E. and O'Donnell, J.H. (American Chemical Society, Washington, DC, 1989), p. 4.Google Scholar
19Silverman, J., Radiation Processing of Polymers, edited by Singh, A. and Silverman, J. (Hanser Publishers, New York, 1992), p. 17.Google Scholar
20Lewis, M. B. and Lee, E. H., Nucl. Instrum. Methods B61, 457 (1991).CrossRefGoogle Scholar
21Lewis, M. B., Allen, W. R., Buhl, R. A., Packan, N. H., Cook, S. W., and Mansur, L. K., Nucl. Instrum. Methods B43, 243 (1989).CrossRefGoogle Scholar
22Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
23Lee, E. H., Lee, Y., Oliver, W. C., and Mansur, L. K., J. Mater. Res. 8, 377 (1993).CrossRefGoogle Scholar
24Calcagno, L. and Foti, G., Nucl. Instrum. Methods B59/60, 1153 (1991).CrossRefGoogle Scholar
25Puglisi, O., Licciardello, A., Calcagno, L., and Foti, G., J. Mater. Res. 3, 1247 (1988).CrossRefGoogle Scholar
26Hill, D. J. T., O'Donnell, J. H., Senake Perera, M. C., and Pomery, P. J., Radiat. Phys. Chem. 40, 127 (1992).Google Scholar
27Brown, W. L., Radiat. Eff. 98, 115 (1986).CrossRefGoogle Scholar
28Calcagno, L., Sheng, K. L., Torrisi, L., and Foti, G., Appl. Phys. Lett. 29, 596 (1976).Google Scholar
29Nethsinghe, L. P. and Gilbert, M., Polymer 29, 1935 (1988).CrossRefGoogle Scholar
30Baltá Calleja, F. J., Adv. Polymer Sci. 66, 117 (1985).CrossRefGoogle Scholar
31Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, Oxford, U.K., 1985), Vol. 1.Google Scholar
32Sigmund, P., Radiat. Eff. 1, 15 (1969).CrossRefGoogle Scholar
33Norgett, M. J., Robinson, M. T., and Torrens, I. M., Nucl. Eng. Design 33, 50 (1974).CrossRefGoogle Scholar
34Lee, E. H., Hembree, D. M. Jr., Rao, G. R., and Mansur, L. K., Phys. Rev. B (in press).Google Scholar
35Tsai, H-C. and Bogy, D. B., J. Vac. Sci. Technol. A 5 (6), 3287 (1987).CrossRefGoogle Scholar