Skip to main content Accessibility help

Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy

  • Wenqian Wu (a1), Song Ni (a1), Yong Liu (a1) and Min Song (a1)


The microstructural evolution of a HfNbTaTiZr high-entropy alloy subjected to cold rolling and subsequent annealing was investigated. The dislocation activity dominates the deformation process. The microstuctural evolution of the alloy during cold rolling can be described as follows: (i) formation of dislocation tangles, (ii) formation of microbands, (iii) formation of thin laths and microshear bands containing thin laths, (iv) the transverse breakdown of the lath to elongated segment, and (v) formation of fine grains. During annealing at 800 and 1000 °C, decomposition of the metastable high-temperature body-centered cubic phase proceeded through a phase separation reaction. Annealing at 800 °C resulted in a nonrecrystallized microstructure with abundant second-phase particles distributed randomly. The second-phase particles with an average size of ∼145 nm were enriched in Ta and Nb, while the chemical composition of the matrix was close to the average composition of the alloy. Meanwhile, an unknown phase slightly enriched in Hf, Zr, and Ti was detected in the interfacial region between the second-phase particles.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299 (2004).
2. Cantor, B., Chang, I., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).
3. Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19(6), 349 (2016).
4. Wu, Y.D., Cai, Y.H., Wang, T., Si, J.J., Zhu, J., Wang, Y.D., and Hui, X.D.: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014).
5. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153 (2014).
6. Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).
7. Chuang, M.H., Tsai, M.H., Wang, W.R., Lin, S.J., and Yeh, J.W.: Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys. Acta Mater. 59(16), 6308 (2011).
8. Tang, Z., Huang, L., He, W., and Liaw, P.: Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16(2), 895 (2014).
9. Chou, Y.L., Wang, Y.C., Yeh, J.W., and Shih, H.C.: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros. Sci. 52(10), 3481 (2010).
10. Liu, C.M., Wang, H.M., Zhang, S.Q., Tang, H.B., and Zhang, A.L.: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).
11. Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3(1), 1 (2014).
12. Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3(2), 95 (2014).
13. Yeh, J.W.: Recent progress in high-entropy alloys. Ann. Chim.-Sci. Mat. 31(6), 633 (2006).
14. Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2(3), 107 (2014).
15. Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, 2015).
16. Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47(7), 3322 (2016).
17. Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68(7), 526 (2013).
18. Yao, M.J., Pradeep, K.G., Tasan, C.C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5 (2014).
19. Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).
20. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
21. Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., Zherebtsov, S., Efimov, A., and Salishchev, G.: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8 (2015).
22. Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509(20), 6043 (2011).
23. Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47(9), 4062 (2012).
24. Senkov, O.N. and Semiatin, S.L.: Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 649, 1110 (2015).
25. Pennycook, S.J. and Nellist, P.D.: Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011).
26. Li, Z.J., Godfrey, A., and Liu, Q.: Evolution of microstructure and local crystallographic orientations in rolled Al–1% Mn single crystals of {001}〈110〉 orientation. Acta Mater. 52(1), 149 (2004).
27. Wert, J., Liu, Q., and Hansen, N.: Dislocation boundary formation in a cold-rolled cube-oriented Al single crystal. Acta Mater. 45(6), 2565 (1997).
28. Yang, D.K., Cizek, P., Hodgson, P.D., and Wen, C.E.: Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium. Acta Mater. 58(13), 4536 (2010).
29. Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109(10), 103505 (2011).
30. Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534 (2008).
31. Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21(6), 433 (2011).
32. Hughes, D.: Microstructural evolution in a non-cell forming metal: Al–Mg. Acta Metall. Mater. 41(5), 1421 (1993).
33. Hughes, D. and Hansen, N.: Microstructural evolution in nickel during rolling and torsion. Mater. Sci. Technol. 7(6), 544 (1991).
34. Hughes, D., Hansen, N., and Bammann, D.: Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 48(2), 147 (2003).
35. Kuhlmann-Wilsdorf, D. and Hansen, N.: Geometrically necessary, incidental and subgrain boundaries. Scr. Metall. Mater. 25(7), 1557 (1991).
36. Li, B.L., Godfrey, A., Meng, Q.C., Liu, Q., and Hansen, N.: Microstructural evolution of IF-steel during cold rolling. Acta Mater. 52(4), 1069 (2004).
37. Xue, Q., Cerreta, E.K., and Gray, G.T.I.: Microstructural characteristics of post-shear localization in cold-rolled 316L stainless steel. Acta Mater. 55(2), 691 (2007).
38. Zhu, K.Y., Vassel, A., Brisset, F., Lu, K., and Lu, J.: Nanostructure formation mechanism of alpha-titanium using SMAT. Acta Mater. 52(14), 4101 (2004).
39. Xue, Q. and Gray, G.T.I.: Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization. Metall. Mater. Trans. A 37(8), 2447 (2006).
40. Afonso, C.R., Ferrandini, P.L., Ramirez, A.J., and Caram, R.: High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti–35Nb–7Zr–5Ta alloy for implant applications. Acta Biomater. 6(4), 1625 (2010).
41. Senkov, O., Senkova, S., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).


Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy

  • Wenqian Wu (a1), Song Ni (a1), Yong Liu (a1) and Min Song (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed