Skip to main content Accessibility help

Effects of cell parameters at low strain rates on the mechanical properties of metallic foams of Al and 7075-T6 alloy processed by pressurized infiltration casting method

  • Bhasker Soni (a1) and Somnath Biswas (a1)


Cell morphology and relative density (ρrel) are two crucial intrinsic parameters controlling the mechanical properties of metal foams (MFs) and directly depend on their structure (closed/open-cell) and composition (affecting processing parameters). Here, we report on compressive studies of MFs of aluminum (Al) and 7075-T6 alloy processed via a customized route at strain rate, έ = 0.002 and 2.0 s−1. In both sets of MFs, the strength and apparent elastic modulus (E) monotonically increased with ρrel at both έ. At έ = 2.0 s−1, an increase in cell size (Cs) enhanced the strength of both sets of MFs, while at έ = 0.002 s−1, only the alloy foams showed strength increment. The densification strain (εd) of Al foams at έ = 0.002 s−1 monotonically decreased with increasing ρrel, whereas the alloy foams collapsed before the onset of densification. None of the MFs showed any particular trend of εd at έ = 2.0 s−1. The studies conclude that the mechanical properties of MFs with similar morphology, foam parameters, and processing route depend on έ and Cs. Absorption energy (W) and absorption efficiency (Im) of the two sets of MFs were also compared.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ma, L. and Song, Z.: Cellular structure control of aluminium foams during foaming process of aluminium melt. Scripta Mater. 39, 1523 (1998).
2.Kanahashi, H., Mukai, T., Nieh, T.G., Aizawa, T., and Higashi, K.: Effect of cell size on the dynamic compressive properties of open-celled aluminum foams. Mater. Trans., JIM 43, 2548 (2002).
3.Koza, E., Leonowicz, M., Wojciechowski, S., and Simancik, F.: Compressive strength of aluminium foams. Mater. Lett. 58, 132 (2003).
4.Nieh, T.G., Higashi, K., and Wadsworth, J.: Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater. Sci. Eng., A 283, 105 (2000).
5.Zhao, C.Y.: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transfer 55, 3618 (2012).
6.Jiang, B., Zhao, N.Q., Shi, C.S., and Li, J.J.: Processing of open cell aluminum foams with tailored porous morphology. Scripta Mater. 53, 781 (2005).
7.Paul, A. and Ramamurty, U.: Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng., A 281, 1 (2000).
8.Cao, X., Wang, Z., Ma, H., Zhao, L., and Yang, G.: Effects of cell size on compressive properties of aluminum foam. Trans. Nonferrous Met. Soc. China 16, 351 (2006).
9.Michailidis, N., Stergioudi, F., Tsouknidas, A., and Pavlidou, E.: Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material. Mater. Sci. Eng., A 528, 1662 (2011).
10.Bafti, H. and Habibolahzadeh, A.: Compressive properties of aluminum foam produced by powder-carbamide spacer route. Mater. Des. 52, 404 (2013).
11.Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., and Wadley, H.N.G.: Metal Foams: A Design Guide (Butterworth-Heinemann, Waltham, MA, 2000).
12.Banhart, J.: Manufacturing routes for metallic foams. JOM 52, 22 (2000).
13.Marchi, C.S. and Mortensen, A.: Deformation of open-cell aluminum foam. Acta Mater. 49, 3959 (2001).
14.Palmer, R.A., Gao, K., Doan, T.M., Green, L., and Cavallaro, G.: Pressure infiltrated syntactic foams-process development and mechanical properties. Mater. Sci. Eng., A 464, 85 (2007).
15.Despois, J.F., Marmottant, A., Salvo, L., and Mortensen, A.: Influence of the infiltration pressure on the structure and properties of replicated aluminium foams. Mater. Sci. Eng., A 462, 68 (2007).
16.Jinnapat, A. and Kennedy, A.: The manufacture and characterization of aluminium foams made by investment casting using dissolvable spherical sodium chloride bead preforms. Metals 1, 49 (2011).
17.Jiang, W., Fan, Z., Liu, D., Dong, X., Wu, H., and Wang, H.S.: Effects of process parameters on internal quality of castings during novel casting. Mater. Manuf. Processes 28, 48 (2012).
18.Banhart, J.: Light-metal foams—History of innovation and technological challenges. Adv. Eng. Mater. 15, 82 (2013).
19.Kim, S. and Lee, C.: A review on manufacturing and application of open-cell metal foam. Procedia Mater. Sci. 4, 305 (2014).
20.Soni, B. and Biswas, S.: Mass-scale processing of open-cell metallic foams by pressurized casting method. J. Porous Mater. 24, 29 (2016).
21.Soni, B. and Biswas, S.: Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method. Mater. Charact. 130, 198 (2017).
22.Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 2000).
23.Surace, R., De Filippis, L.A.C., Ludovico, D.A., and Boghetich, G.: Influence of processing parameters on aluminium foam produced by space holder technique. Mater. Des. 30, 1878 (2009).
24.Standard test methods of compression testing of metallic materials at room temperature, ASTM E9–09, 2009.
25.Murr, L.E., Amato, K.N., Li, S.J., Tian, Y.X., Cheng, X.Y., Gaytan, S.M., Martineza, E., Shindo, P.W., Medina, F., and Wicker, R.B.: Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4, 1396 (2011).
26.Mahmutyazicioglu, N., Albayrak, O., Ipekoglu, M., and Altintas, S.: Effects of alumina (Al2O3) addition on the cell structure and mechanical properties of 6061 foams. J. Mater. Res. 28, 2509 (2013).
27.Wang, Z., Shen, J., Lu, G., and Zhao, L.: Compressive behavior of closed-cell aluminum alloy foams at medium strain rates. Mater. Sci. Eng., A 528, 2326 (2011).
28.Schüler, P., Fischer, S.F., Bührig-Polaczek, A., and Fleck, C.: Deformation and failure behavior of open cell Al foams under quasistatic and impact loading. Mater. Sci. Eng., A 587, 250 (2013).
29.Li, Q.M., Magkiriadis, I., and Harrigan, J.J.: Compressive strain at the onset of densification of cellular solids. J. Cell. Plast. 42, 371 (2006).
30.Ruan, D., Lu, G., Chen, F.L., and Siores, E.: Compressive behaviour of aluminium foams at low and medium strain rates. Compos. Struct. 57, 331 (2002).
31.Cady, C.M., Gray, G.T. III, Liu, C., Lovato, M.L., and Mukai, T.: Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Mater. Sci. Eng., A 525, 1 (2009).
32.Youn, S.W. and Kang, C.G.: Evaluation of mechanical properties of porous 6061 alloys fabricated by the powder compression and induction heating process. Metall. Mater. Trans. A 35, 2419 (2004).
33.Peroni, M., Solomos, G., and Pizzinato, V.: Impact behaviour testing of aluminium foam. Int. J. Impact Eng. 53, 74 (2013).
34.Calladine, C.R. and English, R.W.: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26, 689 (1984).
35.Simone, A.E. and Gibson, L.J.: Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater. 46, 2139 (1998).
36.Chen, C., Lu, T.J., and Fleck, N.A.: Effect of imperfections on the yielding of two-dimensional foams. J. Mech. Phys. Solid. 47, 2235 (1999).
37.Han, F., Cheng, H., Li, Z., and Wang, Q.: The strain rate effect of an open cell aluminum foam. Metall. Mater. Trans. A 36, 645 (2005).
38.Jiang, B., Wang, Z., and Zhao, N.: Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Mater. 56, 169 (2007).
39.Campana, F. and Pilone, D.: Effect of wall microstructure and morphometric parameters on the crush behaviour of Al alloy foams. Mater. Sci. Eng., A 479, 58 (2008).
40.Klintworth, J.W. and Stronge, W.J.: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs. Int. J. Mech. Sci. 30, 273 (1988).
41.Wang, X. and Zhou, G.: The static compressive behavior of aluminum foam. Rev. Adv. Mater. Sci. 33, 316 (2013).
42.Song, B., Chen, W., Yanagita, T., and Frew, D.J.: Confinement effects on the dynamic compressive properties of an epoxy syntactic foam. Compos. Struct. 67, 279 (2005).
43.Wouterson, E.M., Boey, F.Y.C., Hu, X., and Wong, S.C.: Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures. Compos. Sci. Technol. 65, 1840 (2005).
44.Esen, Z. and Bor, S.: Processing of titanium foams using magnesium spacer particles. Scripta Mater. 56, 341 (2007).
45.Saha, M.C., Kabir, M.E., and Jeelani, S.: Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater. Sci. Eng., A 479, 213 (2008).
46.Michailidis, N., Stergioudi, F., and Tsouknidas, A.: Deformation and energy absorption properties of powder-metallurgy produced Al foams. Mater. Sci. Eng., A 528, 7222 (2011).
47.Chang, S., Huang, Y., Yang, S., Kuo, S., and Lee, M.: In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr. Polym. 88, 684 (2012).
48.Koohbor, B., Mallon, S., Kidane, A., and Lu, W.: The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading. Polym. Test. 44, 112 (2015).
49.Zhou, J., Shrotriya, P., and Soboyejo, W.O.: Mechanisms and mechanics of compressive deformation in open-cell Al foams. Mech. Mater. 36, 781 (2004).
50.Paul, A. and Ramamurty, U.: Variability in mechanical properties of a metal foam. Acta Mater. 52, 869 (2004).
51.Raj, R.E., Parameswaran, V., and Daniel, B.S.S.: Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam. Mater. Sci. Eng., A 526, 11 (2009).
52.Mondal, D.P., Goyal, M.D., and Das, S.: Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Mater. Sci. Eng., A 507, 102 (2009).
53.Yi, F., Zhu, Z., Zu, F., Hu, S., and Yi, P.: Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Mater. Charact. 47, 417 (2001).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed