Skip to main content Accessibility help
×
Home

The effects of capping barrier layers on the compositional and structural variations of integrated Pb(Zr, Ti)O3 ferroelectric capacitor having the dimension 3 × 3 μm2

  • Cheol Seong Hwang (a1), Ju Cheol Shin (a1), Jae Bin Lee (a1), Jae-hoo Park (a1), Young Jin Cho (a1), Hyeong Joon Kim (a1), Sang Yung Lee (a2) and Soon Oh Park (a2)...

Abstract

Structure and composition of the ferroelectric Pb(Zr, Ti)O3 layers in a capacitor of the ferroelectric random-access memory (FeRAM) device having a density of 64 k were investigated by transmission electron microscopy (TEM) together with the energy-dispersive spectroscopy (EDS) technique. The 250 nm thick PZT layer derived by the sol-gel route showed a 2–3% Pb-deficient, 3–4% Ti-deficient, and 5–7% Zr-excess composition at the top electrode interface compared to the bulk composition when they were as-fabricated. The local compositional nonuniformity became more critical as the integration process proceeded, which seriously degraded the ferroelectric hysteresis and the device yield. The major cause of the compositional variation was the outward diffusion of Pb through the capping barrier TiO2 layer during annealing at 650 °C. The AlN capping barrier layer was also not effective in suppressing the diffusion of Pb. However, the Al2O3/TiO2 double capping layer was very effective in suppressing the outward diffusion of Pb, and excellent ferroelectric characteristic was expected.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: cheolsh@plaza.snu.ac.kr

References

Hide All
1.Chung, D.J., Lee, S. Y., Koo, B.J., Hwang, Y. S., Shin, D. W., Lee, J. W., Chun, Y. S., Shin, S. H., Lee, M.H., Park, H. B., Lee, S. I., Kim, K., and Lee, J. G., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 122.
2.Tanabe, N., Kobayashi, S., Miwa, T., Amanuma, K., Mori, H., Inoue, N., Takeuchi, T., Saitoh, S., Saitoh, S., Hayashi, Y., Yamada, J., Koike, H., Hada, H., and Kunio, T., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 124.
3.Kachi, T., Shoji, K., Yamashita, H., Kisu, T., Torii, K., Kumihashi, T., Fujisaki, Y., and Yokoyama, N., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 126.
4.Chung, D.J., Kang, N.S., Lee, S. Y., Koo, B. J., Lee, J. W., Park, J. H., Chun, Y.S., Lee, M.H., Jeon, B. G., Lee, S.I., Shim, T. E., and Hwang, C.G., Symp. VLSI Tech. Digest of Tech. Papers (Kyoto, 1997), p. 139.
5.Boyer, L. L., Velasquez, N., and Evans, J. T. Jr, Jpn. J. Appl. Phys. 36, 5799 (1997).
6.Hintermaier, F., Hendrix, B., Desrochers, D., Roeder, J., Dehm, C., Fritsch, E., Hönlein, W., Mazuré, C., Nagel, N., Thwaite, P., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 56.
7.Yang, H-M., Luo, J-S., and Lin, W-T., J. Mater. Res. 12, 1145 (1997).
8.Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 34, 5184 (1995).
9.Sandashivan, S., Aggarwal, S., Song, T.K., Ramesh, R., Evans, J.T. Jr, Tuttle, B. A., Warren, W. L., and Dimos, D., J. Appl. Phys. 83, 2165 (1998).
10.Lee, J., Choi, C.H., Park, B. H., Noh, T.W., and Lee, J.K., Appl. Phys. Lett. 72, 3380 (1998).
11.Moulson, A.J. and Herbert, J. M., in Electroceramics (Chapman and Hall, London, 1990), p. 283.
12.Scott, J. F., Integ. Ferro. 9, 1 (1995).
13.Hwang, C.S. and Kim, H. J., J. Am. Ceram. Soc. 78, 337 (1995).
14.Park, I.S., Kim, Y.K., Lee, S.M., Chung, J. H., Kang, S.B., Yoo, C.Y., Lee, S. I., and Lee, M. Y., Proc. Inter. Electr. Device Meet. (1997), p. 617.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed