Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-11T04:29:20.326Z Has data issue: false hasContentIssue false

Effects of boron on microstructure in cast zirconium alloys

Published online by Cambridge University Press:  31 January 2011

D.H. StJohn
Affiliation:
CAST Cooperative Research Centre, Defence Materials Technology Centre, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
Get access

Abstract

Trace additions of boron to cast zirconium result in significant microstructural changes similar to those observed with additions of boron to titanium alloys. These changes include the promotion of dendritic growth and a refinement in both the prior β and α grain size. The refinement of the prior β grain size is explained using a model of grain refinement in association with values calculated from the binary Zr–B phase diagram. It is proposed that the refinement of the α phase occurs through a combination of increased nucleation and altered diffusion mechanisms during cooling through the β transus.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tewari, R., Srivastava, D., Dey, G.K., Chakravarty, J.K., Banerjee, S.Microstructural evolution in zirconium based alloys. J. Nucl. Mater. 383, 153 (2008)CrossRefGoogle Scholar
2.Graham, R.A.Silicon grain refinement of zirconium U.S. Patent No. 5,076,488( December 31 1991)Google Scholar
3.Rosecrans, P.M.Manufacturing process to reduce large grain growth in zirconium alloys U.S. Patent No. 4,647,317( March 3 1987)Google Scholar
4.Jiang, L., Perez-Prado, M.T., Ruano, O.A., Kassner, M.E.The fabrication of bulk ultrafine-grained zirconium by accumulative roll bonding. JOM 59, 42 (2007)CrossRefGoogle Scholar
5.Choi, W.S., Ryoo, H.S., Hwang, S.K., Kim, M.H., Kwun, S.I., Chae, S.W.Microstructure evolution in Zr under equal channel angular pressing. Metall. Mater. Trans. A 33, 973 (2002)CrossRefGoogle Scholar
6.Ökvist, G., Källström, K.The effect of zirconium carbide on the β → α transformation structure in zircaloy. J. Nucl. Mater. 35, 316 (1970)CrossRefGoogle Scholar
7.Fong, W.L., Northwood, D.O.Identification of second-phase particles in zircaloy-4 nuclear fuel sheathing. Metallography 15, 27 (1982)CrossRefGoogle Scholar
8.Hayes, E.E., Kaufmann, A.R.Observations on the alpha-beta transformation in zirconiumZirconium and Zirconium Alloys: A Symposium Eighth Western Metal Congress and Exposition, American Society for Metals (Los Angeles 1953)241Google Scholar
9.Woo, O.T., Tangri, K.Transformation characteristics of rapidly heated and quenched zircaloy-4-oxygen alloys. J. Nucl. Mater. 79, 83 (1979)CrossRefGoogle Scholar
10.Bermingham, M.J., McDonald, S.D., Nogita, K., St, D.H.John, and M.S. Dargusch: Effects of boron on microstructure in cast titanium alloys. Scr. Mater. 59, 538 (2008)CrossRefGoogle Scholar
11.Srinivasan, R., Miracle, D., Tamirisakandala, S.Direct rolling of as-cast Ti–6Al–4V modified with trace additions of boron. Mater. Sci. Eng., A 487, 541 (2008)CrossRefGoogle Scholar
12.Tamirisakandala, S., Bhat, R.B., Tiley, J.S., Miracle, D.B.Grain refinement of cast titanium alloys via trace boron addition. Scr. Mater. 43, 1421 (2005)CrossRefGoogle Scholar
13.Bermingham, M.J., McDonald, S.D., Dargusch, M.S., StJohn, D.H.The mechanism of grain refinement of titanium by silicon. Scr. Mater. 58, 1050 (2008)CrossRefGoogle Scholar
14.Bermingham, M.J., McDonald, S.D., StJohn, D.H., Dargusch, M.S.Segregation and grain refinement in cast titanium alloys. J. Mater. Res. 24, 1529 (2009)CrossRefGoogle Scholar
15.Bermingham, M.J., McDonald, S.D., StJohn, D.H., Dargusch, M.S.Beryllium as a grain refiner in titanium. J. Alloys Compd. 481, L20 (2009)CrossRefGoogle Scholar
16.Bermingham, M.J., McDonald, S.D., Dargusch, M.S., StJohn, D.H.Grain-refinement mechanisms in titanium alloys. J. Mater. Res. 23, 98 (2008)CrossRefGoogle Scholar
17.Donachie, M.J.Titanium: A Technical Guide (ASM International, Materials Park, OH 2000)CrossRefGoogle Scholar
18.Vander Voort, G.F.Metallography Principles and Practice (McGraw-Hill, New York 1984)CrossRefGoogle Scholar
19.E 112 - 96 standard test methods for determining average grain sizeAnnual Book of ASTM Standards Vol. 03.01 (ASTM International, West Conshohocken, PA 2005)267Google Scholar
20.Okamoto, H.Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH 2000)Google Scholar
21.Greer, A.L., Cooper, P.S., Meredith, M.W., Schnider, W., Schumacher, P., Spittle, J.A., Tronche, A.Grain refinement of aluminium alloys by inoculation. Adv. Eng. Mater. 5, 81 (2003)CrossRefGoogle Scholar
22.Easton, M.A., StJohn, D.H.A model of grain refinement incorporating alloy constitution and potency of heterogeneous nuleant particles. Acta Mater 49, 1867 (2001)CrossRefGoogle Scholar
23.Bittermann, H., Rogl, P.Critical assessment and thermodynamic calculation of the ternary system C–Hf–Zr (carbon–hafnium–zirconium). J. Phase Equilib. 23, 218 (2002)CrossRefGoogle Scholar
24.Hari Kumar, K.C., Wollants, P., Delaey, L.Thermodynamic assessment of the Ti–Zr system and calculation of the Nb–Ti–Zr phase diagram. J. Alloys Compd. 206, 121 (1994)CrossRefGoogle Scholar
25.Servant, C.Thermodynamic assessments of the phase diagrams of the hafnium–vanadium and vanadium–zirconium systems. J. Phase Equilib. 26, 39 (2005)CrossRefGoogle Scholar
26.Stein, F., Sauthoff, G., Palm, M.Experimental determination of intermetallic phases, phase equilibria, and invariant reaction temperatures in the Fe–Zr system. J. Phase Equilib. 23, 480 (2002)CrossRefGoogle Scholar
27.Jiang, M., Oikawa, K.I., Ikeshoji, T., Wulff, L., Ishida, K.Thermodynamic calculations of Fe–Zr and Fe–Zr–C systems. J. Phase Equilib. 22, 406 (2001)CrossRefGoogle Scholar
28.Kornilov, I.I.Suboxides of transition group metals. Inorg. Mater. 3, 1614 (1967)Google Scholar
29.Kocherzhinskii, Y.A., Kulik, O.G., Shishkin, E.A.Phase diagram of the system Zr–Si. Metallofizika 64, 48 (1976)Google Scholar
30.Rogl, P., Potter, P.E.A critical review and thermodynamic calculation of the binary system: zirconium–boron. Calphad 12, 191 (1988)CrossRefGoogle Scholar
31.Easton, M.A., StJohn, D.H.An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36, 1911 (2005)CrossRefGoogle Scholar
32.Bermingham, M.J., McDonald, S.D., StJohn, D.H., Dargusch, M.S.Titanium as an endogenous nuclei. Philos. Mag. 90, 699 (2010)CrossRefGoogle Scholar
33.Peters, M., Lütjering, G., Ziegler, G.Control of microstructures of (α + β)-titanium alloys. Z. Metallkd. 74, 274 (1983)Google Scholar