Skip to main content Accessibility help
×
Home

Effects of biomimetic micropattern on titanium deposited with PDA/Cu and nitric oxide release on behaviors of ECs

  • Wenyong Ma (a1), Luying Liu (a2), Xiao luo (a2), Congzhen Han (a2), Ping Yang (a2), Yuancong Zhao (a2) and Nan Huang (a2)...

Abstract

Surface modification with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is an effective method for improving hemocompatibility. Peptide GREDVY immobilized on Ti is of great benefit to endothelialization. Micropattern of PMPC and GREDVY can regulate cells distribution, behaviors, and nitric oxide (NO) release. Copper can be used as catalytic to release NO from a donor in vitro, which can inhibit platelets adhesion, activation, and aggregation. The Ti-PDA(Cu)-M/R(P) micropattern was fabricated with PMMPC-HD {PMMPC [monomer contain MPC and methacrylic acid (MA)] was cross-linked with hexamethylene diamine} and peptide Gly-Arg-Glu-Asp-Val-Tyr (GREDVY) using PDMS stamp, and it was characterized by SEM, FTIR, and XPS. The results demonstrated that the PMPC and peptide GREDVY were immobilized onto polydopamine successfully. Simultaneously, the copper existed in polydopamine was confirmed by XPS. The rate of NO release in vitro catalyzed by copper ions was 1.5–5.3 × 10−10 mol/(cm2 min). It will be beneficial to inhibiting platelets adhesion and proliferation of ECs.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: yangping8@263.net

References

Hide All
1.Williams, D.F.: On the mechanisms of biocompatibility. Biomaterials 29, 2941 (2008).
2.Li, G., Yang, P., Qin, W., Maitz, M.F., Zhou, S., and Huang, N.: The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials 32, 4691 (2011).
3.Tousoulis, D., Kampoli, A.M., Tentolouris, C., Papageorgiou, N., and Stefanadis, C.: The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 10, 4 (2012).
4.Lei, J., Vodovotz, Y., Tzeng, E., and Billiar, T.R.: Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 35, 175 (2013).
5.Naghavi, N., De, M.A., Alavijeh, O.S., Cousins, B.G., and Seifalian, A.M.: Nitric oxide donors for cardiovascular implant applications. Small 9, 22 (2013).
6.de Mel, A., Murad, F., and Seifalian, A.M.: Nitric oxide: A guardian for vascular grafts? Chem. Rev. 111, 5742 (2011).
7.Taite, L.J., Yang, P., Jun, H.W., and West, J.L.: Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mater. Res., Part B 84, 108 (2008).
8.Li, X., Qiu, H., Gao, P., Yang, Y., Yang, Z., and Huang, N.: Synergetic coordination and catecholamine chemistry for catalytic generation of nitric oxide on vascular stents. NPG Asia Mater. 10, 482 (2018).
9.Hwang, S., Cha, W., and Meyerhoff, M.E.: Polymethacrylates with a covalently linked CuII–cyclen complex for the in situ generation of nitric oxide from nitrosothiols in blood. Angew. Chem., Int. Ed. 118, 2811 (2006).
10.Yang, Z., Yang, Y., Xiong, K., Li, X., Qi, P., Tu, Q., Jing, F., Weng, Y., Wang, J., and Huang, N.: Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials 63, 80 (2015).10.1016/j.biomaterials.2015.06.016
11.Zorlutuna, P., Annabi, N., Camci-Unal, G., Nikkhah, M., Cha, J.M., Nichol, J.W., Manbachi, A., Bae, H., Chen, S., and Khademhosseini, A.: Microfabricated biomaterials for engineering 3D tissues. Adv. Mater. 24, 1782 (2012).10.1002/adma.201104631
12.Zhang, F., Li, G., Yang, P., Qin, W., Li, C., and Huang, N.: Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion. Colloids Surf., B 102, 457 (2013).
13.Chen, J., Ge, J., Guo, B., Gao, K., and Ma, P.X.: Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering. J. Mater. Chem. B 4, 2477 (2016).
14.Wang, L., Wu, Y., Guo, B., and Ma, P.X.: Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9, 9167 (2015).
15.Wu, Y., Wang, L., Guo, B., and Ma, P.X.: Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11, 5646 (2017).
16.Wu, Y., Wang, L., Hu, T., Ma, P.X., and Guo, B.: Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. J. Colloid Interface Sci. 518, 252 (2018).
17.Nikkhah, M., Eshak, N., Zorlutuna, P., Annabi, N., Castello, M., Kim, K., Dolatshahi-Pirouz, A., Edalat, F., Bae, H., and Yang, Y.: Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33, 9009 (2012).
18.Versaevel, M., Grevesse, T., and Gabriele, S.: Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012).
19.Liu, Y., Ai, K., and Lu, L.: Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057 (2014).
20.Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).10.1126/science.1147241
21.Ren, H., Wu, J., Xi, C., Lehnert, N., Major, T., Bartlett, R.H., and Meyerhoff, M.E.: Electrochemically modulated nitric oxide (NO) releasing biomedical devices via copper(II)-Tri(2-pyridylmethyl)amine mediated reduction of nitrite. ACS Appl. Mater. Interfaces 6, 3779 (2014).10.1021/am406066a
22.Pant, J., Goudie, M.J., Hopkins, S.P., Brisbois, E.J., and Handa, H.: Tunable nitric oxide release from S-nitroso-N-acetylpenicillamine via catalytic copper nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 9, 15254 (2017).
23.Harding, J.L.: Composite materials with embedded metal organic framework catalysts for nitric oxide release from bioavailable S-nitrosothiols. J. Mater. Chem. B 2, 2530 (2014).10.1039/C3TB21458C
24.Wonoputri, V., Gunawan, C., Liu, S., Barraud, N., Yee, L.H., Lim, M., and Amal, R.: Copper complex in poly(vinyl chloride) as a nitric oxide-generating catalyst for the control of nitrifying bacterial biofilms. ACS Appl. Mater. Interfaces 7, 22148 (2015).
25.Jia, Z., Li, H., Zhao, Y., Frazer, L., Qian, B., Borguet, E., Ren, F., and Dikin, D.A.: Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J. Mater. Sci. 52, 11620 (2017).
26.Lee, H., Rho, J., and Messersmith, P.B.: Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv. Mater. 21, 431 (2009).
27.Yang, Z.L., Zhong, S., Yang, Y., Maitz, M.F., Li, X., Tu, Q.F., Qi, P., Zhang, H., Qiu, H., and Wang, J.: Polydopamine-mediated long-term elution of the direct thrombin inhibitor bivalirudin from TiO2 nanotubes for improved vascular biocompatibility. J. Mater. Chem. B 2, 6767 (2014).
28.Yang, Y., Li, X., Qiu, H., Li, P., Qi, P., Maitz, M.F., You, T., Shen, R., Yang, Z., Tian, W., and Huang, N.: Polydopamine modified TiO2 nanotube arrays for long-term controlled elution of bivalirudin and improved hemocompatibility. ACS Appl. Mater. Interfaces 10, 7649 (2018).
29.Park, J., Brust, T.F., Lee, H.J., Lee, S.C., Watts, V.J., and Yeo, Y.: Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano 8, 3347 (2014).
30.Ma, W., Liu, L., Chen, H., Zhao, Y., Yang, P., and Huang, N.: Micropatterned immobilization of membrane-mimicking polymer and peptides for regulation of cell behaviors in vitro. RSC Adv. 8, 20836 (2018).10.1039/C8RA02607F
31.Wei, Y., Ji, Y., Xiao, L.L., Lin, Q.K., Xu, J.P., Ren, K.F., and Ji, J.: Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials 34, 2588 (2013).
32.Liu, Y., Yang Tan, T.T., Yuan, S., and Choong, C.: Multifunctional P(PEGMA)–REDV conjugated titanium surfaces for improved endothelial cell selectivity and hemocompatibility. J. Mater. Chem. B 1, 157 (2013).
33.Massia, S.P. and Hubbell, J.A.: Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J. Biol. Chem. 267, 14019 (1992).
34.Hahn, M.S., Taite, L.J., Moon, J.J., Rowland, M.C., Ruffino, K.A., and West, J.L.: Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519 (2006).
35.Hubbell, J.A., Massia, S.P., Desai, N.P., and Drumheller, P.D.: Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Nat. Biotechnol. 9, 568 (1991).
36.Chen, L., Li, J., Wang, S., Zhu, S., Zhu, C., Zheng, B., Yang, G., and Guan, S.: Surface modification of the biodegradable cardiovascular stent material Mg–Zn–Y–Nd alloy via conjugating REDV peptide for better endothelialization. J. Mater. Res. 33, 4123 (2018).
37.Wu, J., Lin, W., Wang, Z., Chen, S., and Chang, Y.: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28, 7436 (2012).
38.Huang, Q., Yang, Y., Hu, R., Lin, C., Sun, L., and Vogler, E.A.: Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids Surf., B 125, 134 (2015).
39.Liu, X., Yuan, L., Li, D., Tang, Z., Wang, Y., Chen, G., Chen, H., and Brash, J.L.: Blood compatible materials: State of the art. J. Mater. Chem. B 2, 5718 (2014).
40.Ma, W., Yang, P., Li, J., Li, S., Li, P., Zhao, Y., and Huang, N.: Immobilization of poly(MPC) brushes onto titanium surface by combining dopamine self-polymerization and ATRP: Preparation, characterization and evaluation of hemocompatibility in vitro. Appl. Surf. Sci. 349, 445 (2015).
41.Chen, H., Li, X., Zhao, Y., Li, J., Chen, J., Yang, P., Maitz, M.F., and Huang, N.: Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates. Appl. Surf. Sci. 347, 169 (2015).
42.Anderson, D.E.J. and Hinds, M.T.: Endothelial cell micropatterning: Methods, effects, and applications. Ann. Biomed. Eng. 39, 2329 (2011).
43.Cha, W. and Meyerhoff, M.E.: Catalytic generation of nitric oxide from S-nitrosothiols using immobilized organoselenium species. Biomaterials 28, 19 (2007).
44.Yang, Z., Lei, X., Wang, J., Luo, R., He, T., Sun, H., and Huang, N.: A novel technique toward bipolar films containing alternating nano-layers of allylamine and acrylic acid plasma polymers for biomedical application. Plasma Processes Polym. 8, 208 (2011).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed