Skip to main content Accessibility help

Effects of applied strain on pileup morphology during quasi-static and dynamic nanoindentation of cyclic olefin copolymers

  • Nannan Tian (a1) and David F. Bahr (a1)


The local micromechanical properties of two cyclic olefin copolymers (COCs) under an applied strain were measured using quasi-static (QS) and dynamic nanoindentation. Samples were prepared by compression molding and tested at five various applied strain levels, leading to a variation in pileup around the residual indentation impression. The variation in the resulting pileup morphology and the subsequent perceived changes in modulus and hardness as a function of applied strain was quantified for these COCs. The perceived mechanical properties determined using both QS and dynamic tests were influenced by the relative out of plane deformation, and as such provide a method to map local variations in residual stresses and strains without the need to measure residual impression pileup for each indentation. The dynamically measured properties appear to provide a more consistent correlation with both the applied strain and pile up behavior around the indents than the modulus and hardness determined from QS nanoindentation.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Rivers, B.P., Bolden, G.D., and Grah, M.D.: Packaging film and method of decreasing scalping of polar cyclic compounds. U.S. Patent Application No 20090208685, August 20, 2009.
2. Khanarian, G. and Celanese, H.: Optical properties of cyclic olefin copolymers. Opt. Eng. 40(6), 1024 (2001).
3. Shin, J., Park, J., Liu, C., He, J., and Kim, S.: Chemical structure and physical properties of cyclic olefin copolymers—(IUPAC technical report). Pure Appl. Chem. 77(5), 801 (2005).
4. Liu, C., Yu, J., Sun, X., Zhang, J., and He, J.: Thermal degradation studies of cyclic olefin copolymers. Polym. Degrad. Stab. 81(2), 197 (2003).
5. Roy, S., Das, T., Yue, C., and Hu, X.: Transparent cyclic olefin copolymer/silica nanocomposites. Polym. Int. 63(2), 327 (2014).
6. Lawrence, S., Adams, D., Bahr, D., and Moody, N.: Deformation and fracture of a mudflat-cracked laser-fabricated oxide on Ti. J. Mater. Sci. 48(11), 4050 (2013).
7. Schoeppner, R., Bahr, D., Jin, H., Goeke, R., Moody, N., and Prasad, S.: Wear behavior of Au-ZnO nanocomposite films for electrical contacts. J. Mater. Sci. 49(17), 6039 (2014).
8. Nemecek, J.: Creep effects in nanoindentation of hydrated phases of cement pastes. Mater. Charact. 60(9), 1028 (2009).
9. Constantinides, G., Ulm, F., and Van Vliet, K.: On the use of nanoindentation for cementitious materials. Mater. Struct. 36(257), 191 (2003).
10. Ebenstein, D. and Pruitt, L.: Nanoindentation of biological materials. Nano Today 1(3), 26 (2006).
11. Oliver, W. and Pharr, G.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).
12. Cohen, S. and Kalfon-Cohen, E.: Dynamic nanoindentation by instrumented nanoindentation and force microscopy: A comparative review. Beilstein J. Nanotechnol. 4, 815 (2013).
13. Ferry, J.D.: Viscoelastic Properties of Polymers (John Wiley & Sons, New York NY, 1961).
14. Bernard, C., Keryvin, V., Sangleboeuf, J.C., and Rouxel, T.: Indentation creep of window glass around glass transition. Mech. Mater. 42(2), 196206 (2010).
15. Mencik, J., He, L.H., and Swain, M.V.: Determination of viscoelastic-plastic material parameters of biomaterials by instrumented indentation. J. Mech. Behav. Biomed. Mater. 2(4), 318325 (2009).
16. Stan, F. and Fetecau, C.: Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation. Mech. Time-Depend. Mater. 17(2), 205221 (2013).
17. Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33–35), 56255641 (2006).
18. Yuya, P.A. and Patel, N.G.: Analytical model for nanoscale viscoelastic properties characterization using dynamic nanoindentation. Philos. Mag. 94(22), 25052519 (2014).
19. Cheng, Y. and Cheng, C.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44(4–5), 91 (2004).
20. Oyen, M. and Cook, R.: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18(1), 139 (2003).
21. Herbert, E., Oliver, W., and Pharr, G.: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41(7), 074021 (2008).
22. Bruner, C. and Dauskardt, R.: Role of molecular weight on the mechanical device properties of organic polymer solar cells. Macromolecules 47(3), 11171121 (2014).
23. Kralik, V. and Nemecek, J.: Comparison of nanoindentation techniques for local mechanical quantification of aluminium alloy. Mater. Sci. Eng., A 618, 118128 (2014).
24. Suresh, S. and Giannakopoulos, A.: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46(16), 5755 (1998).
25. Pharr, G. and Oliver, W.: Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull. 17(7), 28 (1992).
26. Xia, Z., Riester, L., Curtin, W., Li, H., Sheldon, B., Liang, J., Chang, B., and Xu, J.: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931 (2004).
27. Tsui, T., Oliver, W., and Pharr, G.: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11(3), 752 (1996).
28. Xu, Z. and Li, X.: Estimation of residual stresses from elastic recovery of nanoindentation. Philos. Mag. 86(19), 2835 (2006).
29. Lee, Y.H. and Kwon, D.: Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 52(6), 1555 (2004).
30. Xu, Z.H. and Li, X.D.: Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation. Acta Mater. 53(7), 1913 (2005).
31. Beegan, D., Chowdhury, S., and Laugier, M.: A nanoindentation study of copper films on oxidised silicon substrates. Surf. Coat. Technol. 176(1), 124 (2003).
32. Bolshakov, A. and Pharr, G.: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13(4), 1049 (1998).
33. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
34. Kese, K., Li, Z., and Bergman, B.: Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip. Mater. Sci. Eng., A 404(1–2), 1 (2005).
35. Zeon Corporation: Specialty Plastics Division, Report no. B1011EV1 and no. D1013EV1. (ZEON Coporation, 1-6-2 Marunouchi, Chiyoda-ku Tokyo, Japan, 2006).
36. TI 950 TriboIndenter Users Manual (Revision 9.2.1211) (Hysitron Inc., Minneapolis, 2011).
37. Tranchida, D., Piccarolo, S., Loos, J., and Alexeev, A.: Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity. Macromolecules 40(4), 1259 (2007).
38. Kassavetis, S., Mitsakakis, K., and Logothetidis, S.: Nanoscale patterning and deformation of soft matter by scanning probe microscopy. Mater. Sci. Eng., C 27(5–8), 1456 (2007).
39. Grunlan, J.C., Xia, X.Y., Rowenhorst, D., and Gerberich, W.W.: Preparation and evaluation of tungsten tips relative to diamond for nanoindentation of soft materials. Rev. Sci. Instrum. 72(6), 2804 (2001).
40. Lucas, B.N., Oliver, W.C., and Ramamurthy, A.C.: Spatially resolved mechanical properties of a "TPO" using a frequency specific depth-sensing indentation technique, ANTEC Conference Proceedings 3, Society of Plastics Engineers, Brookfield, CT, 1997, p. 3445.
41. Adhihetty, I., Hay, J., Chen, W., and Padmanabhan, P.: Thin film mechanical properties through nanoindentation. In Fundamentals of Nanoindentation and Nanotribology, Vol. 522, Materials Research Society, Pittsburgh, PA, 1998; p. 317.
42. Kamran, Y. and Larsson, P.L.: Second-order effects at microindentation of elastic polymers using sharp indenters. Mater. Des. 32(6), 3645 (2011).
43. Hochstetter, G., Jimenez, A., and Loubet, J.: Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J. Macromol. Sci., Part B: Phys 38(5–6), 681 (1999).
44. Rettler, E., Kranenburg, J.M., Hoeppener, S., Hoogenboom, R., and Schubert, U.S.: Verification of selected key assumptions for the analysis of depth-sensing indentation data. Macromol. Mater. Eng. 298(1), 78 (2013).


Related content

Powered by UNSILO

Effects of applied strain on pileup morphology during quasi-static and dynamic nanoindentation of cyclic olefin copolymers

  • Nannan Tian (a1) and David F. Bahr (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.