Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:14:19.578Z Has data issue: false hasContentIssue false

Effect of WC content on glass formation, thermal stability, and phase evolution of a TiNbCuNiAl alloy synthesized by mechanical alloying

Published online by Cambridge University Press:  31 January 2011

Y.Y. Li
Affiliation:
School of Mechanical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
C. Yang*
Affiliation:
School of Mechanical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China; and State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
W.P. Chen
Affiliation:
School of Mechanical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
X.Q. Li
Affiliation:
School of Mechanical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: cyang@scut.edu.cn
Get access

Abstract

Amorphous Ti66Nb13Cu8Ni6.8Al6.2 alloy powders with different tungsten carbide (WC) contents were synthesized by mechanical alloying. Outstanding differences in particle size, thermal stability, glass-forming ability, and phase evolution are found for the synthesized Ti-based glassy powders with different WC contents. This is attributed to the fact that the WC was partially alloyed into the glassy matrix and the matrix element Ti was also partially alloyed into the WC particles. The obtained glassy powders exhibit a wide supercooled liquid region above 64 K. Meanwhile, the main crystalline phase is the ductile β-Ti with a high volume fraction in the crystallized alloy powders. These two aspects offer the possibility of easily preparing a plasticity-enhanced bulk composite in the supercooled liquid region by powder metallurgy, which couples the nanosized WC particles with in situ precipitated ductile β-Ti phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
3Salimon, A.I., Ashby, M.F., Bréchet, Y., Greer, A.L.: Bulk metallic glasses: What are they good for? Mater. Sci. Eng., A 375–377, 385 2004CrossRefGoogle Scholar
4Inoue, A.: Bulk amorphous and nanocrystalline alloys with high functional properties. Mater. Sci. Eng., A 304–306, 1 2001CrossRefGoogle Scholar
5Yim, H.C., Conner, R.D., Szuecs, F., Johnson, W.L.: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 2002Google Scholar
6Kim, K.B.: Formation of in-situ nanoscale Ag particles in (Ti0.33Zr0.33Hf0.33)40(Ni0.33Cu0.33Ag0.33)50Al10 alloy with wide supercooled liquid region. Mater. Lett. 59, 1117 2005Google Scholar
7Guo, F.Q., Wang, H.J., Poon, S.J., Shiflet, G.J.: Ductile titanium- based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 2005CrossRefGoogle Scholar
8Kim, Y.C., Kim, W.T., Kim, D.H.: A development of Ti-based bulk metallic glass. Mater. Sci. Eng., A 375, 127 2004CrossRefGoogle Scholar
9He, G., Löser, W., Eckert, J.: Devitrification and phase transformation of (Ti0.5Cu0.25Ni0.15Sn0.05Zr0.05)100–xMox metallic glasses. Scripta Mater. 50, 7 2004CrossRefGoogle Scholar
10Xu, Y.K., Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 2005CrossRefGoogle Scholar
11Fu, H.M., Zhang, H.F., Wang, H., Zhang, Q.S., Hu, Z.Q.: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles. Scripta Mater. 52, 669 2005CrossRefGoogle Scholar
12Yim, H.C., Busch, R., Johnson, W.L.: The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Phys. 83, 7993 1998Google Scholar
13Lee, M.H., Lee, J.Y., Bae, D.H., Kim, W.T., Sordelet, D.J., Kim, D.H.: A development of Ni-based alloys with enhanced plasticity. Intermetallics 12, 1133 2004CrossRefGoogle Scholar
14Xu, Y.K., Xu, J.: Ceramics particulate reinforced Mg65Cu20 Zn5Y10 bulk metallic glass composites. Scripta Mater. 49, 843 2003CrossRefGoogle Scholar
15Bian, Z., Wang, R.J., Wang, W.H., Zhang, T., Inoue, A.: Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties. Adv. Funct. Mater. 14, 55 2004CrossRefGoogle Scholar
16Yim, H.C., Busch, R., Köster, U., Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 1999Google Scholar
17He, G., Eckert, J., Löser, W.: Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites. Acta Mater. 51, 1621 2003CrossRefGoogle Scholar
18Fan, C., Ott, R.T., Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 2002CrossRefGoogle Scholar
19Kühn, U., Eckert, J., Mattern, N., Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002CrossRefGoogle Scholar
20Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 2003CrossRefGoogle Scholar
21Fu, X.L., Li, Y., Schuh, C.A.: Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites. Appl. Phys. Lett. 87, 241904 2005CrossRefGoogle Scholar
22Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000CrossRefGoogle ScholarPubMed
23He, G., Eckert, J., Löser, W., Schultz, L.: Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 2003CrossRefGoogle ScholarPubMed
24Kühn, U., Mattern, N., Gebert, A., Kusy, M., Boström, M., Siegel, U., Schultz, L.: Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity. J. Appl. Phys. 98, 054307 2005CrossRefGoogle Scholar
25Eckert, J., Kühn, U., Das, J., Scudino, S., Radtke, N.: Nanostructured composite materials with improved deformation behavior. Adv. Eng. Mater. 7, 587 2005CrossRefGoogle Scholar
26Eckert, J., Reger-Leonhard, A., Weiß, B., Heilmaier, M., Schultz, L.: Bulk nanostructured multicomponent alloys. Adv. Eng. Mater. 3, 41 20013.0.CO;2-S>CrossRefGoogle Scholar
27Eckert, J., Kübler, A., Schultz, L.: Mechanically alloyed Zr55Al10Cu30Ni5 metallic glass composites containing nanocrystalline W particles. J. Appl. Phys. 85, 7112 1999CrossRefGoogle Scholar
28Wang, Y.L., Xu, J., Yang, R.: Glass formation in high-energy ball milled Tix(Cu0.45Ni0.55)94–xSi4B2 alloys. Mater. Sci. Eng., A 352, 112 2003CrossRefGoogle Scholar
29Zhang, L.C., Xu, J., Ma, E.: Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)44−xAlxSi4B2 alloys with supercooled liquid region. J. Mater. Res. 17, 1743 2002CrossRefGoogle Scholar
30Zhang, L.C., Shen, Z.Q., Xu, J.: Glass formation in a (Ti,Zr,Hf)– (Cu,Ni,Ag)–Al high-order alloy system by mechanical alloying. J. Mater. Res. 18, 2141 2003CrossRefGoogle Scholar
31Eckert, J.: Mechanical alloying of highly processable glassy alloys. Mater. Sci. Eng., A 226–228, 364 1997CrossRefGoogle Scholar
32El-Eskandarany, M.S., Omori, M., Inoue, A.: Solid-state synthesis of new glassy Co65Ti20W15 alloy powders and subsequent densification into a fully dense bulk glass. J. Mater. Res. 20, 2845 2005CrossRefGoogle Scholar
33Lee, P.Y., Liu, W.C., Lin, C.K., Huang, J.C.: Fabrication of Mg–Y–Cu bulk metallic glass by mechanical alloying and hot consolidation. Mater. Sci. Eng., A 449–451, 1095 2007CrossRefGoogle Scholar
34Choi, P.P., Kim, J.S., Nguyen, O.T.H., Kwon, D.H., Kwon, Y.S., Kim, J.C.: Al-La-Ni-Fe bulk metallic glasses produced by mechanical alloying and spark-plasma sintering. Mater. Sci. Eng., A 449–451, 1119 2007CrossRefGoogle Scholar
35Jeng, I.K., Lin, C.K., Lee, P.Y.: Formation and characterization of mechanically alloyed Ti–Cu–Ni–Sn bulk metallic glass composites. Intermetallics 14, 957 2006CrossRefGoogle Scholar
36Jeng, I.K., Lee, P.Y.: Mechanically alloyed tungsten carbide particle/Ti50Cu28Ni15Sn7 glassy alloy matrix composites. Mater. Sci. Eng., A 449–451, 1090 2007CrossRefGoogle Scholar
37Tokita, M.: Trends in advanced SPS spark plasma sintering system and technology. J. Soc. Powder Technol. Jpn. 30, 790 1993CrossRefGoogle Scholar
38Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 1969CrossRefGoogle Scholar
39Chattopadhyay, P.P., Nambissan, P.M.G., Pabi, S.K., Manna, I.: Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation. Phys. Rev. B 63, 054107 2001CrossRefGoogle Scholar
40Manna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F., Fecht, H-J.: Formation of face-centered-cubic titanium by mechanical attrition. J. Appl. Phys. 93, 1520 2003CrossRefGoogle Scholar
41Li, Y.Y., Yang, C., Chen, W.P., Li, X.Q., Zhu, M.: Oxygen-induced amorphization of metallic titanium by ball milling. J. Mater. Res. 22, 1927 2007CrossRefGoogle Scholar
42Titanium and Titanium Alloys, edited by C. Leyens and M. Peters, translated into Chinese by Z.H. Chen et al. Chemical Industry Press Beijing, People’s Republic of China 2005 8Google Scholar
43Binary Alloy Phase Diagrams, edited by S. Nagasaki and M. Hirabayashi in Japanese AGNE Gijutsu Center, Co., Ltd., Tokyo, Japan 2002), translated into Chinese by A.S. Liu (Metallurgical Industry Press, Beijing, People’s Republic of China, 2004 227Google Scholar