Skip to main content Accessibility help
×
Home

Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating

  • Wenhao Duan (a1), Peng Song (a1), Chao Li (a1), Taihong Huang (a1), Zhenhua Ge (a1), Jing Feng (a1) and Jiansheng Lu (a1)...

Abstract

The cyclic oxidation experiment of yttria-stabilized zirconia coatings deposited on NiCoCrAlYHf alloys by air plasma spraying was investigated at 1050 °C in air and in air containing water vapor. The results revealed that water vapor has a great influence on the oxidation resistance of the thermal barrier coatings (TBCs). Compared with the samples oxidized in air atmosphere, TBCs oxidized in air containing water vapor had a longer lifetime. It was also found that different atmospheres could lead to different HfO2 formation positions, which could decrease the rumpling in the oxide layer. In particular, after the coatings on Hf-doped NiCoCrAlY were first pretreated in air containing water vapor for 24 h at 1050 °C, the lifetime of the pretreated coating was doubled compared to the coating in laboratory air only. The water vapor pretreatment of the coatings could be an important method for optimizing the lifetime of TBCs.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: songpengkm@163.com, songpeng@kmust.edu.cn

References

Hide All
1.Clarke, D.R., Oechsner, M., and Padture, N.P.: Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37, 891898 (2012).
2.Darolia, R.: Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 58, 315348 (2013).
3.Stiger, M.J., Yanar, N.M., Topping, M.G., Pettit, F.S., and Meier, G.H.: Thermal barrier coatings for the 21st century. Z. Met. 90, 10691078 (1999).
4.Peters, M., Leyens, C., Schulz, U., and Kaysser, W.A.: EB-PVD thermal barrier coatings for aeroengines and gas turbines. Adv. Eng. Mater. 3, 193204 (2001).
5.Levi, C.G.: Emerging materials and processes for thermal barrier systems. Curr. Opin. Solid State Mater. Sci. 8, 7791 (2004).
6.Sullivan, M.H. and Mumm, D.R.: Transient stage oxidation of MCrAlY bond coat alloys in high temperature, high water vapor content environments. Surf. Coat. Technol. 258, 963972 (2014).
7.Yan, K., Guo, H.B., and Gong, S.K.: High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres. Corros. Sci. 75, 337344 (2013).
8.Hou, P.Y.: Impurity effects on alumina scale growth. J. Am. Ceram. Soc. 86, 660668 (2003).
9.Pint, B.A., Treska, M., and Hobbs, L.W.: The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiAl. Oxid. Met. 47, 120 (1997).
10.Padture, N.P.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280284 (2002).
11.Veal, B.W., Paulikas, A.P., and Hou, P.Y.: Tensile stress and creep in thermally grown oxide. Nat. Mater. 5, 349351 (2006).
12.Huang, T., Bergholz, J., Mauer, G., Vassen, R., Naumenko, D., and Quadakkers, W.J.: Effect of test atmosphere composition on high-temperature oxidation behaviour of CoNiCrAlY coatings produced from conventional and ODS powders. Mater. High Temp. 1–3, 97107 (2018).
13.Xiong, Y., Li, M., and Li, S.: Interdiffusion behaviors of interface between thermal barrier coating and Ni superalloy at high temperatures. J. Mater. Sci. Eng. 7, 6369 (2007).
14.Davis, K.M. and Tomozawa, M.: Water diffusion into silica glass: Structural changes in silica glass and their effect on water solubility and diffusivity. J. Non-Cryst. Solids 185, 203220 (1995).
15.Song, P., He, X., Xiong, X., Ma, H., Song, Q., , J., and Lu, J.: Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature. Mater. Res. Express 5, 036514 (2018).
16.Heuer, A.H., Nakagawa, T., Azar, M.Z., Hovis, D.B., Smialek, J.L., Gleeson, B., Hine, N.D.M., Guhl, H., Lee, H-S., Tangney, P., Foulkes, W.M.C., and Finnis, M.W.: On the growth of Al2O3 scales. Acta Mater. 61, 66706683 (2013).
17.Heuer, A.H., Hovis, D.B., Smialek, J.L., and Gleeson, B.: Alumina scale formation: A new perspective. J. Am. Ceram. Soc. 94, s146s153 (2011).
18.Heuer, A.H.: Oxygen and aluminum diffusion in α-Al2O3: How much do we really understand? J. Eur. Ceram. Soc. 28, 14951507 (2008).
19.Preis, W. and Sitte, W.: Fast grain boundary diffusion and rate-limiting surface exchange reactions in polycrystalline materials. J. Appl. Phys. 97, p093504 (2005).
20.Hussain, N., Qureshi, A.H., Shahid, K.A., Chughtai, N.A., and Khalid, F.A.: High-temperature oxidation behavior of HASTELLOY C-4 in steam. Oxid. Met. 61, 355364 (2004).
21.Whittle, D.P. and Stringer, J.: Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos. Trans. R. Soc., A 295, 309 (1980).
22.Pint, B.A.: Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid. Met. 45, 137 (1996).
23.Gupta, D.K. and Duvall, D.S.: A Silicon and Hafnium Modified Plasma Sprayed MCrAlY Coating. Superalloys 1984, Gell, M., ed. (TMS, Warrendale, Pennsylvania, 1984); p. 711.
24.Pint, B., Wright, I., Lee, W., Zhang, Y., Prüβner, K., and Alexander, K.: Substrate and bond coat compositions: Factors affecting alumina scale adhesion. Mater. Sci. Eng., A 245, 201211 (1998).
25.Li, D., Guo, H., Wang, D., Zhang, T., Gong, S., and Xu, H.: Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 °C. Corros. Sci. 66, 125135 (2013).
26.Pint, B.A., Haynes, J.A., and Zhang, Y.: Effect of superalloy substrate and bond coating on TBC lifetime. Surf. Coat. Technol. 205, 12361240 (2010).
27.Guo, H., Li, D., Zheng, L., Gong, S., and Xu, H.: Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200 °C. Corros. Sci. 88, 97208 (2014).
28.Yan, K., Guo, H., and Gong, S.: High-temperature oxidation behavior of β-NiAl with various reactive element dopants in dry and humid atmospheres. Corros. Sci. 83, 335342 (2014).
29.Zang, J., Song, P., Feng, J., Xiong, X., Chen, R., Liu, G., and Lu, J.: Oxidation behaviour of the nickel-based superalloy DZ125 hot-dipped with Al coatings doped by Si. Corros. Sci. 112, 170179 (2016).
30.Huang, T., Naumenko, D., Song, P., Lu, J., and Quadakkers, W.J.: Effect of titanium addition on alumina growth mechanism on yttria-containing FeCrAl-base alloy. Oxid. Met. 90, 671690 (2018).
31.Munawar, A.U., Schulz, U., and Shahid, M.: Microstructure and lifetime of EB-PVD TBCs with Hf-doped bond coat and Gd-zirconate ceramic top coat on CMSX-4 substrates. Surf. Coat. Technol. 299, 104112 (2016).
32.Shang, S., Wang, Y., Gleeson, B., and Liu, Z.: Understanding slow-growing alumina scale mediated by reactive elements: Perspective via local metal-oxygen bonding strength. Scr. Mater. 150, 139142 (2018).
33.Young, D.J., Naumenko, D., Wessel, E., Singheiser, L., and Quadakkers, W.J.: Effect of Zr additions on the oxidation kinetics of FeCrAlY alloys in low and high pO2 gases. Metall. Mater. Trans. A 42, 11731183 (2011).
34.Al-Abadleh, H.A. and Grasslan, V.H.: FT-IR study of water adsorption on aluminium oxide. Langmuir 19, 341347 (2003).
35.Wang, X., Peng, X., Tan, X., and Wang, F.: The reactive element effect of ceria particle dispersion on alumina growth: A model based on microstructural observations. Sci. Rep. 6, 29593 (2016).
36.Li, C., Song, P., Khan, A., Feng, J., Chen, K., Zang, J., Xiong, X., , J., and Lu, J.: Influence of water vapor on the HfO2 distribution within the oxide layer on CoNiCrAlHf alloys. J. Alloys Compd. 739, 690699 (2018).
37.Evans, A.G., He, M.Y., and Hutchinson, J.W.: Mechanics-based scaling laws for the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 249271 (2001).
38.Angle, J.P., Morgan, P.E.D., Mecartney, M.L., and Cawley, J.: Water vapor-enhanced diffusion in alumina. J. Am. Ceram. Soc. 96, 33723374 (2013).
39.Wiederhorn, S.M. and Bolz, L.H.: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 10, 543548 (1970).
40.Athanasiou, C.E.: Non-contact femtosecond laser-based methods for investigating glass mechanics at small scales. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 2018; ch. 3.

Keywords

Related content

Powered by UNSILO

Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating

  • Wenhao Duan (a1), Peng Song (a1), Chao Li (a1), Taihong Huang (a1), Zhenhua Ge (a1), Jing Feng (a1) and Jiansheng Lu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.