Skip to main content Accessibility help
×
Home

Effect of void defect on c-axis deformation of single-crystal Ti under uniaxial stress conditions: Evolution of tension twinning and dislocations

  • Yuming Qi (a1), Xiuhua Chen (a2) and Miaolin Feng (a1)

Abstract

Deformation twins have a major role in the microstructure evolution of hexagonal close packed (HCP) metals. Voids are common defects in metals and have a significant impact on their properties. In this work, using molecular dynamics, a tension simulation of single-crystal titanium (Ti) with different void sizes under uniaxial stress conditions was performed. The results showed that the evolution and dominance of the $\left\{ {10\bar{1}2} \right\}$ twin system using the Henning potential was not consistent with the Schmid criterion when the single-crystal Ti contained void defects. From a microscopic perspective, the authors analyzed the relationship between the nucleation and growth of twins and the emission of dislocation loops. The authors found that the existence of voids not only contributes to the emission of dislocation loops but also hinders the movement of these loops. With the increase in void size, the peak dislocation density of ${1 \over 3}\left\langle {\bar{1}100} \right\rangle$ partial dislocation loops decreased. This work is helpful to further investigate the nucleation and evolution of tension twins and to form an effective growth criterion for twins to study the twinning process of HCP metals during plastic deformation.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: mlfeng@sjtu.edu.cn

References

Hide All
1.Donachie, M.J.: Titanium: A Technical Guide, 2nd ed. (ASM International, Materials Park, Ohio, 2000).
2.Leyens, C. and Peters, M.: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH Verlag GmbH & Co., 2003). IBSN: 3-527-30534-3.
3.Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243, 231 (1998).
4.Conrad, H.: Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 26, 123 (1981).
5.Partridge, P.G.: The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169 (1967).
6.Kim, I., Kim, J., Shin, D., Liao, X., and Zhu, Y.: Deformation twins in pure titanium processed by equal channel angular pressing. Scr. Mater. 48, 813 (2003).
7.Xiao, L.: Twinning behavior in the Ti–5 at.% Al single crystals during cyclic loading along [0001]. Mater. Sci. Eng. A 394, 168 (2005).
8.Yoo, M.: Twinning and mechanical behavior of titanium aluminides and other intermetallics. Intermetallics 6, 597 (1998).
9.Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).
10.Rawat, S. and Mitra, N.: Molecular dynamics investigation of c-axis deformation of single crystal Ti under uniaxial stress conditions: Evolution of compression twinning and dislocations. Comput. Mater. Sci. 141, 19 (2018).
11.Barrett, C., Tschopp, M., and El Kadiri, H.: Automated analysis of twins in hexagonal close-packed metals using molecular dynamics. Scr. Mater. 66, 666 (2012).
12.Lainé, S.J. and Knowles, K.M.: .$\left\{ {11\bar{2}4} \right\}$ deformation twinning in commercial purity titanium at room temperature. Philos. Mag. 95, 2153 (2015).
13.Zhang, J. and Joshi, S.P.: Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 60, 945 (2012).
14.Askeland, D.R. and Phule, P.P.: The Science and Engineering of Materials (Springer, 2003). IBSN: 978-94-009-1842-9.
15.Needleman, A.: Void growth in an elastic-plastic medium. J. Appl. Mech. 39, 964 (1972).
16.Koplik, J. and Needleman, A.: Void growth and coalescence in porous plastic solids. Int. J. Solids Struct. 24, 835 (1988).
17.Sung, P-H. and Chen, T-C.: Studies of crack growth and propagation of single-crystal nickel by molecular dynamics. Comput. Mater. Sci. 102, 151 (2015).
18.Zhao, K., Chen, C., Shen, Y., and Lu, T.: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Comput. Mater. Sci. 46, 749 (2009).
19.Tang, T., Kim, S., and Horstemeyer, M.: Molecular dynamics simulations of void growth and coalescence in single crystal magnesium. Acta Mater. 58, 4742 (2010).
20.Aghababaei, R. and Joshi, S.P.: Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations. Acta Mater. 69, 326 (2014).
21.Rawat, S. and Joshi, S.P.: Effect of multiaxial loading on evolution of $\left\{ {101\bar{2}} \right\}$ twinning in magnesium single crystals. Mater. Sci. Eng., A 659, 256 (2016).
22.Liu, Y., Li, N., Shao, S., Gong, M., Wang, J., McCabe, R., Jiang, Y., and Tomé, C.: Characterizing the boundary lateral to the shear direction of deformation twins in magnesium. Nat. Commun. 7, 11577 (2016).
23.Yang, Z., Zhang, G., and Zhao, J.: Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions. Phys. Lett. A 380, 917 (2016).
24.Rawat, S. and Mitra, N.: Evolution of tension twinning in single crystal Ti under compressive uniaxial strain conditions. Comput. Mater. Sci. 141, 302 (2018).
25.Bao, L., Schuman, C., Lecomte, J.S., Philippe, M.J., Zhao, X., and Esling, C.: A study of twin variant selection and twin growth in titanium. Adv. Eng. Mater. 13, 928 (2011).
26.Godet, S., Jiang, L., Luo, A., and Jonas, J.: Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scr. Mater. 55, 1055 (2006).
27.Honeycutt, J.D. and Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).
28.Lubarda, V., Schneider, M., Kalantar, D., Remington, B., and Meyers, M.: Void growth by dislocation emission. Acta Mater. 52, 1397 (2004).
29.Ohashi, T.: Crystal plasticity analysis of dislocation emission from micro voids. Int. J. Plast. 21, 2071 (2005).
30.Traiviratana, S., Bringa, E.M., Benson, D.J., and Meyers, M.A.: Void growth in metals: Atomistic calculations. Acta Mater. 56, 3874 (2008).
31.Cottrell, A.H. and Bilby, B.: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 62, 49 (1949).
32.Cottrell, A. and Bilby, B.: L.X. A mechanism for the growth of deformation twins in crystals. London, Edinburgh Dublin Philos. Mag. J. Sci. 42, 573 (1951).
33.Hennig, R., Lenosky, T., Trinkle, D., Rudin, S., and Wilkins, J.: Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases. Phys. Rev. B 78, 054121 (2008).
34.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
35.Martys, N.S. and Mountain, R.D.: Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59, 3733 (1999).
36.Evans, D.J. and Holian, B.L.: The Nose–Hoover thermostat. J. Chem. Phys. 83, 4069 (1985).
37.Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).
38.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Qi et al. supplementary material
Qi et al. supplementary material 1

 Unknown (436 KB)
436 KB
UNKNOWN
Supplementary materials

Qi et al. supplementary material
Qi et al. supplementary material 2

 Unknown (436 KB)
436 KB

Effect of void defect on c-axis deformation of single-crystal Ti under uniaxial stress conditions: Evolution of tension twinning and dislocations

  • Yuming Qi (a1), Xiuhua Chen (a2) and Miaolin Feng (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed