Skip to main content Accessibility help

Effect of twisting fatigue on the electrical reliability of a metal interconnect on a flexible substrate

  • Jung-Kwon Yang (a1), Young-Joo Lee (a1), Seol-Min Yi (a2), Byoung-Joon Kim (a3) and Young-Chang Joo (a1)...


To secure the reliability of flexible electronics, the effect of multicomponent stress on the device properties during complex mechanical deformation needs to be thoroughly understood. The electrical resistances of metal interconnects are investigated by in situ monitoring at different twisting angles and with different pattern positions. As the twisting angle increased, the electrical resistance increased earlier. Furthermore, in the line pattern located far from the central axis, severe electrical degradation and fatigue damage formation were observed. Multicomponent stress evolution during twisting was analyzed by the finite-element simulation method. For easy practical application for estimating the representative twisting strain, an analytic solution of twisting deformation was formulated and compared with the simulation. Using the equivalent strain, the fatigue lifetime was fitted, and the exponents were obtained for lifetime expectation. This systematic study provides the guidelines for highly reliable flexible devices and the tools for determining the expected fatigue lifetime.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All

Contributing Editor: C. Robert Kao



Hide All
1. Huang, X., Liu, Y., Cheng, H., Shin, W-J., Fan, J.A., Liu, Z., Lu, C-J., Kong, G-W., Chen, K., Patnaik, D., Lee, S-H., Hage-Ali, S., Huang, Y., and Rogers, J.A.: Materials and designs for wireless epidermal sensors of hydration and strain. Adv. Funct. Mater. 24, 38463854 (2014).
2. Liu, Q.C., Xu, J.J., Xu, D., and Zhang, X.B.: Flexible lithium-oxygen battery based on a recoverable cathode. Nat. Commun. 6, 7892 (2015).
3. Kim, S., Kwon, H.J., Lee, S., Shim, H., Chun, Y., Choi, W., Kwack, J., Han, D., Song, M., Kim, S., Mohammadi, S., Kee, I., and Lee, S.Y.: Low-power flexible organic light-emitting diode display device. Adv. Mater. 23, 35113516 (2011).
4. Li, Y., Lee, D-K., Kim, J.Y., Kim, B., Park, N-G., Kim, K., Shin, J-H., Choi, I-S., and Ko, M.J.: Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy Environ. Sci. 5, 8950 (2012).
5. Zhu, X., Zhang, B., Gao, J., and Zhang, G.: Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scr. Mater. 60, 178181 (2009).
6. Lee, J-H., Kim, N-R., Kim, B-J., and Joo, Y-C.: Improved mechanical performance of solution-processed MWCNT/Ag nanoparticle composite films with oxygen-pressure-controlled annealing. Carbon 50, 98106 (2012).
7. Kim, B-J., Shin, H-A.S., Lee, J-H., Yang, T-Y., Haas, T., Gruber, P., Choi, I-S., Kraft, O., and Joo, Y-C.: Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Sci. 29, 28272834 (2014).
8. Lee, Y-J., Shin, H-A.S., Nam, D-H., Yeon, H-W., Nam, B., Woo, K., and Joo, Y-C.: Improvements of mechanical fatigue reliability of Cu interconnects on flexible substrates through MoTi alloy under-layer. Electron. Mater. Lett. 11, 149154 (2015).
9. Glushko, O., Klug, A., List-Kratochvil, E.J.W., and Cordill, M.J.: Relationship between mechanical damage and electrical degradation in polymer-supported metal films subjected to cyclic loading. Mater. Sci. Eng., A 662, 157161 (2016).
10. Akinwande, D., Petrone, N., and Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).
11. Lee, P., Lee, J., Lee, H., Yeo, J., Hong, S., Nam, K.H., Lee, D., Lee, S.S., and Ko, S.H.: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 33263332 (2012).
12. Kim, B.J., Cho, Y., Jung, M.S., Shin, H.A., Moon, M.W., Han, H.N., Nam, K.T., Joo, Y.C., and Choi, I.S.: Fatigue-free, electrically reliable copper electrode with nanohole array. Small 8, 33003306 (2012).
13. Moon, G.D., Lim, G.H., Song, J.H., Shin, M., Yu, T., Lim, B., and Jeong, U.: Highly stretchable patterned gold electrodes made of Au nanosheets. Adv. Mater. 25, 27072712 (2013).
14. Zhang, Y., Fu, H., Su, Y., Xu, S., Cheng, H., Fan, J.A., Hwang, K-C., Rogers, J.A., and Huang, Y.: Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 78167827 (2013).
15. Hsu, Y-Y., Gonzalez, M., Bossuyt, F., Axisa, F., Vanfleteren, J., and De Wolf, I.: The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromech. Microeng. 20, 075036 (2010).
16. Gonzalez, M., Axisa, F., Bulcke, M.V., Brosteaux, D., Vandevelde, B., and Vanfleteren, J.: Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825832 (2008).
17. Zhou, R., Guo, W., Yu, R., and Pan, C.: Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells. J. Mater. Chem. A 3, 2302823034 (2015).
18. Yoon, S.G., Koo, H.J., and Chang, S.T.: Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl. Mater. Interfaces 7, 2756227570 (2015).
19. Cho, D-Y., Eun, K., Choa, S-H., and Kim, H-K.: Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon 66, 530538 (2014).
20. Song, S., Jang, J., Ji, Y., Park, S., Kim, T-W., Song, Y., Yoon, M-H., Ko, H.C., Jung, G-Y., and Lee, T.: Twistable nonvolatile organic resistive memory devices. Org. Electron. 14, 20872092 (2013).
21. Lu, N., Suo, Z., and Vlassak, J.J.: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 16791687 (2010).
22. Yu, D.Y.W. and Spaepen, F.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95, 29912997 (2004).
23. Suresh, S.: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, 1999); pp. 133222.
24. Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Book Company, London, 1988); pp. 381419.
25. Kim, B-J., Shin, H-A.S., Jung, S-Y., Cho, Y., Kraft, O., Choi, I-S., and Joo, Y-C.: Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Mater. 61, 34733481 (2013).
26. Li, Y., Wang, X-S., and Meng, X-K.: Buckling behavior of metal film/substrate structure under pure bending. Appl. Phys. Lett. 92, 131902131903 (2008).
27. Toth, F., Rammerstorfer, F.G., Cordill, M.J., and Fischer, F.D.: Detailed modelling of delamination buckling of thin films under global tension. Acta Mater. 61, 24252433 (2013).
28. Shames, I.H. and Pitarresi, J.M.: Introducion to Solid Mechanics, 3rd ed. (Pearson Education, New Delhi, 2000); pp. 513554.
29. Gupta, R. and Siller, T.S.: Stress distribution in structural composite lumber under torsion. For. Prod. J. 55, 5156 (2005).
30. Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag, and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 32613269 (2000).
31. Xiang, Y. and Vlassak, J.J.: Bauschinger effect in thin metal films. Scr. Mater. 53, 177182 (2005).
32. Trahair, N.S.: Nonlinear elastic nonuniform torsion. J. Struct. Eng. 131, 11351142 (2005).
33. Coffin, L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME. 76, 931950 (1954).
34. Manson, S.S.: Behavior of Materials Under Conditions of Thermal Stress; Report 1170; Lewis Flight Propulsion Laboratory: Cleveland, OH, 1954.
35. Kraft, O., Schwaiger, R., and Wellner, P.: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng., A 319–321, 919923 (2001).
36. Sun, X.J., Wang, C.C., Zhang, J., Liu, G., Zhang, G.J., Ding, X.D., Zhang, G.P., and Sun, J.: Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D: Appl. Phys. 41, 195404 (2008).
37. Basquin, O.H.: The exponential law of endurance tests. Proc. ASTM 10, 625630 (1910).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed