Skip to main content Accessibility help
×
Home

Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part

  • Pin Yang (a1), Mark A. Rodriguez (a1), Lisa A. Deibler (a1), Bradley H. Jared (a1), James Griego (a1), Alice Kilgo (a1), Amy Allen (a1) and Daniel K. Stefan (a1)...

Abstract

The powder-bed laser additive manufacturing (AM) process is widely used in the fabrication of three-dimensional metallic parts with intricate structures, where kinetically controlled diffusion and microstructure ripening can be hindered by fast melting and rapid solidification. Therefore, the microstructure and physical properties of parts made by this process will be significantly different from their counterparts produced by conventional methods. This work investigates the microstructure evolution for an AM fabricated AlSi10Mg part from its nonequilibrium state toward equilibrium state. Special attention is placed on silicon dissolution, precipitate formation, collapsing of a divorced eutectic cellular structure, and microstructure ripening in the thermal annealing process. These events alter the size, morphology, length scale, and distribution of the beta silicon phase in the primary aluminum, and changes associated with elastic properties and microhardness are reported. The relationship between residual stress and silicon dissolution due to changes in lattice spacing is also investigated and discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to this author. e-mail: pyang@sandia.gov

References

Hide All
1.Hansen, M.: Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958).
2.Brandl, E., Heckenberger, U., Holzinger, V., and Cuchbinder, D.: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue and fracture behavior. Mater. Des. 34, 159 (2012).
3.Caceres, C.H., Davidson, C.J., Griffiths, J.R., and Wang, Q.G.: The effect of Mg on the microstructure and mechanical behavior of Al–Si–Mg casting alloys. Metall. Mater. Trans. A 20, 2611 (1999).
4.Jacobs, M.H.: The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy. Philos. Mag. 26, 1 (1972).
5.Andersen, S.J.: Quantification of the Mg2Si β″ and β′ phases in AlMgSi alloys by transmission electron microscopy. Metall. Mater. Trans. A 26, 1931 (1995).
6.Matsuda, K., Naoi, T., Fujii, K., Uetani, Y., Sato, T., Kamio, A., and Ikeno, S.: Crystal structure of the β″ phase in an Al–1.0 mass% Mg2Si–0.4 mass% Si alloy. Mater. Sci. Eng., A 262, 232 (1999).
7.Murr, L.E.: Metallurgy of additive manufacturing: Examples from electron beam melting. Addit. Manuf. 5, 40 (2015).
8.Holesinger, T.G., Carpenter, J.S., Lienert, T.J., Patterson, B.M., Papin, P.A., Swenson, H., and Cordes, N.L.: Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting. JOM 68, 10001011 (2016).
9.Bose, S.K. and Kumar, R.: Structure of rapidly solidified aluminum-silicon alloys. J. Mater. Sci. 8, 1795 (1973).
10.Mertens, A., Dedry, O., Deuter, D., Rigo, O., and Lecomte-beckers, J.: Thermal treatment of AlSi10Mg processed by laser beam melting. In Proceedings of the 6th International Solid Freeform Fabrication Symposium, Bourell, D., ed. (University of Texas at Austin, Austin, TX, 2015); p. 1007.
11.Rodriguez, M.A., Pearl, M.R., Van Benthem, M.H., Griego, J.J.M., and Pillars, J.R.: Tilt-a-whirl: A texture analysis package for 3D rendering of pole figures using matlab. Powder Diffr. 28, 8189 (2013).
12.Yang, P., Deibler, L.A., Bradley, D., Stefan, D.K., Carroll, J., and Jared, B.J.: Microstructure evolution and thermal properties of an additive manufacture fabricated AlSi10Mg part. (in preparation).
13.Butta, I. and Allen, S.M.: A calorimetric study of precipitation in commercial aluminum alloy 6061. J. Mater. Sci. Lett. 10, 323 (1991).
14.Daoudi, M.I., Triki, A., Redjaimia, A., and Yamina, C.: The determination of the activation energy varying with the precipitation fraction of β″ metastable phase in an Al–Si–Mg alloy using non-isothermal dilatometry. Thermochim. Acta 577, 5 (2014).
15.Fiocchi, J., Tuissi, A., Bassani, P., and Biffi, C.A.: Low temperature annealing dedicated to AlSi10Mg selective laser melting products. J. Alloy. Comp. 695, 3402 (2017).
16.Prashanth, K.G., Scudino, S., Klauss, H.J., Surreddi, K.B., Lober, L., Wang, Z., Chaubey, A.K., Kuhn, U., and Eckert, J.: Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153 (2014).
17.Yan, C., Hao, L., Hussein, A., Young, P., Huang, J., and Zhu, W.: Microstructure and mechanical properties of aluminum alloy cellular lattice structure manufactured by direct metal laser sintering. Mater. Sci. Eng., A 628, 238 (2015).
18.Chou, R., Milligan, J., Paliwal, M., and Brochu, M.: Additive manufacturing of Al–12Si alloy via pulsed selective laser melting. JOM 67, 590 (2015).
19.Lavernia, E.J., Ayers, J.D., and Srivastan, T.S.: Rapid solidification processing with specific application to aluminum alloys. Int. Mater. Rev. 37, 1 (1992).
20.Arai, T., Baker, G.M., Bates, C.E., Bell, T., Bird, E.L., Brennan, R.L., Brooks, C.R., Brown, T.D., Caronico, D.A., Carlson, E.A., Cohen, A., Dahl, J.M., DeAntonio, D.A., DeArdo, A.J., Doane, D.V., Dossett, J.L., Douthett, J., Duhl, D., Ericsson, T., Ferguson, H.A., Filkowski, J.H., Foreman, R.W., Furchheim, B., Garcia, C.I., Gergely, M., Gilbert, R., Godding, A.D., Goodman, D., Grube, W.L., Gundlach, R.B., Hampshire, W.B., Harper, S., Hassell, P.A., Hensley, J.R., Hingwe, A.K., Hingwe, M.K., Howson, T., Jenkins, L.R., Johnson, P., Kirkaldy, J.R., Klaren, C.M., Knerr, C.H., Konkoly, T., Kovacs, B., Krauss, G., Lai, G.Y., Laird, W.J. Jr., Lampman, S., Ludtka, G.M., Manning, J.M., McCurdy, D.W., Nelson, J., O'Brien, J.M., Ostrowski, R., Palmiere, E.J., Panzer, S., Pradhan, R., Reti, T., Robertson, A., Rohrbach, K., Rose, T.C., Ross, N.V., Rothman, M.F., Rowe, J.G., Ruglic, T., Rundman, K.B., Ryan, L., Sagon-King, R.F., Pierre, J. St., Sandven, O.A., Schiller, S., Schmidt, M., Shannon, C.R., Shields, J.A. Jr., Sinha, A.K., Smith, G., Smith, J.W., Somogyi, S., Stevenson, A., Stickels, C.A., Tenney III, A.S., Tillack, D.T., Totten, G.E., Verhoff, S., Walton, C.F., Webster, H., Wisti, M.W., and Witheford, T.J.: Heat Treating of Aluminum Alloys: ASM International, Vol. 4 (Heat Treatment, Materials Park, OH, 1991); p. 842.
21.Li, W., Li, S., Liu, J., Zhang, A., Zhou, Y., Wei, Q., Yan, C., and Shi, Y.: Effect of heat treatment on AlSi10 Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng., A 563, 116 (2016).
22.Aboulkhair, N.T., Tuck, C., Ashcroft, I., Maskery, I., and Everit, N.M.: On the precipitation hardening of selective laser melted AlSi10Mg. Metall. Mater. Trans. A 46, 3337 (2015).
23.Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., and Everitt, N.M.: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a converntional T6-like heat treatment. Mater. Sci. Eng., A 667, 139 (2016).
24.Tradowsky, U., White, J., Ward, R.M., Read, N., Reimers, W., and Attallah, M.M.: Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater. Des. 105, 212 (2016).
25.Kou, S.: Welding Metallurgy, 2nd ed. (Wiley Interscience, New Jersey, 2003).
26.Fredriksson, H. and Akerlind, U.: Solidification and Crystallization Processing in Metals and Alloys, (John Wiley & Sons, Ltd., West Sussex, U.K., 2012); ch. 1.
27.Thijs, L., Kempen, K., Kruth, J-P., and Van Humbeeck, J.: Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acat Mater. 61, 1421 (2013).
28.Wahi, R.P. and von Heimendahl, M.: On the occurrence of the metastable phase β″ on Al–Si–Mg alloys. Phys. Status Solidi A 24, 607 (1974).
29.Wang, X., Esmaeili, S., and Lloyed, D.J.: The sequence of precipitation in the Al–Kg–Si–Cu alloy AA6111. Metall. Mater. Trans. A 27, 2691 (2006).
30.Mercelis, P. and Kruth, J.P.: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12, 254 (2006).
31.Vora, P., Mumtaz, K., Todd, I., and Hopkinson, N.: AlSi10 in situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit. Manuf. 7, 12 (2015).
32.Brito, C., Reinhart, G., Nguyen-Thi, H., Mangelinck-Noel, N., Cheung, N., Spinelli, J.E., and Garcia, A.: High cooling rate cells, dendrites, microstructural spacing and microhardness in directionally solidified Al–Mg–Si alloy. J. Alloy. Comp. 636, 145 (2015).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed