Skip to main content Accessibility help
×
Home

Effect of solder bump geometry on the microstructure of Sn–3.5 wt% Ag on electroless nickel immersion gold during solder dipping

  • Zhiheng Huang (a1), Paul P. Conway (a1), Changqing Liu (a1) and Rachel C. Thomson (a2)

Abstract

Continuous miniaturization of solder joints in high-density packaging makes it important to study how the joint size could affect the solder microstructure and thereby the subsequent in-service reliability. In this study, a printed circuit board with electroless nickel immersion gold (i.e., Au/Ni–P) over Cu bond pads of size approximately ∼80 μm and ∼1500 μm in diameter was dipped into a Sn–3.5Ag solder bath. The study shows that the smaller bumps, which cool more quickly, include much finer Ag3Sn particles. In addition, substantial differences in the thickness of the interfacial intermetallics and the microstructure for different dipping times are observed for different bump sizes. The results from a combined thermodynamic–kinetic model also suggest that the solder bump geometry can influence the dissolution kinetics of the pad metal into the molten solder and therefore the microstructure at the solder-pad interface and within the bulk solder.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail address: P.P.Conway@lboro.ac.uk

References

Hide All
1.Kivilahti, J.K.: The chemical modeling of electronic materials and interconnections. JOM 54, 52 (2002).
2.Morris, J.W.: The microstructure and properties of solder joints. J. Korean Phys. Soc. 35 S335 (1999).
3.Song, H.G., Morris, J.W. and McCormack, M.T.: The microstructure of ultrafine eutectic Au–Sn solder joints on Cu. J. Electron. Mater. 29, 1038 (2000).
4.Schaefer, M., Fournelle, R.A. and Liang, J.: in Design and Reliability of Solder and Solder Interconnections, edited by Mahidhara, R.K., Frear, D.R., Sastry, S.M.L., Murtym, K.L., Liaw, P.K., Winterbottom, W. (TMS, Warrendale, PA, 1997), p. 247.
5.Chada, S., Laub, W., Fournelle, R.A. and Shangguan, D.: An improved numerical method for predicting intermetallic layer thickness developed during the formation of solder joints on Cu substrates. J. Electron. Mater. 28, 1194 (1999).
6.Chada, S., Fournelle, R.A., Laub, W. and Shangguan, D.: Copper substrate dissolution in eutectic Sn–Ag solder and its effect on microstructure. J. Electron. Mater. 29, 1214 (2000).
7.Ma, D., Wang, W.D. and Lahiri, S.K.: Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow. J. Appl. Phys. 91, 3312 (2002).
8.Choi, W.K., Kang, S.K. and Shih, D-Y.: A study of the effects of solder volume on the interfacial reactions in solder joints using the differential scanning calorimetry technique. J. Electron. Mater. 31, 1283 (2002).
9.Sharif, A., Chan, Y.C. and Islam, R.A.: Effect of volume in interfacial reaction between eutectic Sn–Pb solder and Cu metallization in microelectronic packaging. Mater. Sci. Eng. B 106, 120 (2004).
10.Huang, Z., Conway, P.P., Liu, C. and Thomson, R.C.: The effect of microstructure and geometrical features on reliability of ultrafine flip chip micro solder joints. J. Electron. Mater. 33, 1227 (2004).
11.Salam, B., Ekere, N.N., and Rajkumar, D.: Study of the interface microstructure of Sn–Ag–Cu lead-free solders and the effect of solder volume on intermetallic layer formation, in Proc. Electronic Components & Technology Conference (Institute of Electrical and Electronics Engineers, Inc.) 51 471 2001.
12.Davies, R.H., Dinsdale, A.T., Chart, T.G., Barry, T.I. and Rand, M.H.: Application of MTDATA—to the modeling of multicomponent equilibria. High Temp. Sci. 26, 251 (1989).
13.Davies, R.H., Dinsdale, A.T., Gisby, J.A., Robinson, J.A.J. and Martin, S.M.: MTDATA-Thermodynamic and phase equilibrium software from the National Physical Laboratory. Calphad 26, 229 (2002).
14.Ochoa, F., Williams, J.J. and Chawla, N.: Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5 wt%Ag solder. J. Electron. Mater. 32, 1114 (2003).
15.Kang, S.K., Choi, W.K., Shih, D.Y., Henderson, D.W., Gosselin, T., Sarkhel, A., Goldsmith, C. and Puttlitz, K.J.: Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu. JOM 55, 61 (2003).
16.Kang, S.K., Shih, D.Y., Leonard, D., Henderson, D.W., Gosselin, T., Cho, S.I., Yu, J. and Choi, W.K.: Controlling Ag3Sn plate formation in near-ternary-eutectic Sn Ag Cu solder by minor Zn alloying. JOM 56, 34 (2004).
17.Henderson, D.W., Gosselin, T., Sarkhel, A., Kang, S.K., Choi, W.K., Shih, D.Y., Goldsmith, C. and Puttlitz, K.J.: Ag3Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys. J. Mater. Res. 17, 2755 (2002).
18.Jang, J.W., Kim, P.G., Tu, K.N., Frear, D.R. and Thompson, P.: Solder reaction-assisted crystallization of electroless Ni–P under bump metallization in low cost flip chip technology. J. Appl. Phys. 85, 8456 (1999).
19.Jang, J.W., Frear, D.R., Lee, T.Y. and Tu, K.N.: Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 88, 6359 (2000).
20.Kang, S.K., Shih, D.Y., Fogel, K., Lauro, P., Yim, M.J., Advocate, G.G., Griffin, M., Goldsmith, C., Henderson, D.W., Gosselin, T.A., King, D.E., Konrad, J.J., Sarkhel, A. and Puttlitz, K.J.: Interfacial reaction studies on lead (Pb)-free solder alloys. IEEE Trans. Electron. Pack. Manufac. 25, 155 (2002).
21.Sohn, Y.C., Yu, J., Kang, S.K., Choi, W.K. and Shih, D.Y.: Study of the reaction mechanism between electroless Ni–P and Sn and its effect on the crystallization of Ni–P. J. Mater. Res. 18, 4 (2003).
22.Sohn, Y.C., Yu, J., Kang, S.K., Shih, D.Y., and Lee, T.Y.: Study of spalling behaviour of intermetallic compounds during the reaction between electroless Ni–P metallization and lead-free solders, in Proc. Electronic Component & Technology Conference (Institute of Electrical and Electronics Engineers, Inc.) 54 75 2004.
23.Jeon, Y.D., Paik, K.W., Bok, K.S., Choi, W.S. and Cho, C.L.: Studies of electroless nickel under bump metallurgy-solder interfacial reactions and their effects on flip chip solder joint reliability. J. Electron. Mater. 31, 520 (2002).
24.Jeon, J.D., Ostmann, A., Reichl, H., and Paik, K.W.: Comparison of interfacial reactions and reliabilities of Sn3.5Ag, Sn4.0Ag0.5Cu, and Sn0.7Cu solder bumps on electroless Ni–P UBMs. in Proc. Electronic Components & Technology Conference (Institute of Electrical and Electronics Engineers, Inc.) 53, 1203 2003.
25.Hung, K.C., Chan, Y.C., Tang, C.W. and Ong, H.C.: Correlation between Ni3Sn4 intermetallics and Ni3P due to solder reaction assisted crystallization of electroless Ni–P metallization in advanced packages. J. Mater. Res. 15, 2534 (2000).
26.Alam, M.O., Chan, Y.C. and Tu, K.N.: Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn–Ag solder and Au/electroless Ni(P)/Cu bond pad. J. Appl. Phys. 94, 4108 (2003).
27.Matsuki, H., Ibuka, H. and Saka, H.: TEM observation of interfaces in a solder joint in a semiconductor device. Sci. Technol. Adv. Mater. 3, 261 (2002).
28.Hiramori, T., Ito, M., Tanii, Y., Hirose, A. and Kobayashi, K.F.: Sn–Ag based solders bonded to Ni–P/Au plating: Effects of interfacial structure on joint strength. Mater. Trans. 44, 2375 (2003).
29.He, M., Chen, Z. and Qi, G.: Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization. Acta Mater. 52, 2047 (2004).
30.Liu, C.M., Ho, C.E., Chen, W.T. and Kao, C.R.: Reflow soldering and isothermal solid-state aging of Sn–Ag eutectic solder on Au/Ni surface finish. J. Electron. Mater. 30, 1152 (2001).
31.Torazawa, N., Arai, S., Takase, Y., Sasaki, K. and Sakai, H.: Transmission electron microscopy of interfaces in joints between Pb-free solders and electroless Ni–P. Mater. Trans. 44, 1438 (2003).
32.Komiyama, T., Chonan, Y., Onuki, J. and Ohta, T.: The influence of phosphorus concentration of electroless plated Ni–P film on interfacial structures in the joints between Sn–Ag solder and Ni–P alloy film. Mater. Trans. 43, 227 (2002).
33.Hutt, D.A., Liu, C., Conway, P.P., Whalley, D.C. and Mannan, S.H.: Electroless nickel bumping of aluminium bondpads—Part II: Electroless nickel plating. IEEE T Compon Pack T. 25, 98 (2002).
34.Li, L. and Yeung, B.: Wafer level and flip chip design through solder prediction models and validation. IEEE T Compon Pack T. 24, 650 (2001).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed