Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-27T23:41:33.590Z Has data issue: false hasContentIssue false

Effect of Sn on microstructure and mechanical properties of Ti-Fe-(Sn) ultrafine eutectic composites

Published online by Cambridge University Press:  31 January 2011

Jayanta Das*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India
Ralf Theissmann
Affiliation:
Universität Duisburg–Essen, Fakultät für Ingenieurwissenschaften und CeNIDE, 47057 Duisburg, Germany
Wolfgang Löser
Affiliation:
Leibniz–Institut für Festkörper– und Werkstoffforschung Dresden (IFW), D 01069 Dresden, Germany
Jurgen Eckert*
Affiliation:
Leibniz–Institut für Festkörper– und Werkstoffforschung Dresden (IFW), D 01069 Dresden, Germany; and Technische Universität Dresden, Institut für Werkstoffwissenschaft, D-01069 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: j.das@metal.iitkgp.ernet.in
b)This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

High strength (Ti0.705Fe0.295)100-xSnx (0 ≤ x ≤ 6) composites have been prepared through arc melting and cold crucible casting. The microstructure consists of two phase ultrafine eutectic comprised of FeTi and β-Ti phases. The effect of Sn addition to the Ti70.5Fe29.5 eutectic is assessed in terms of microstructure variations such as eutectic spacing, morphology, cell size, lattice parameter of the phases, and the resulting mechanical properties in terms of strength and plasticity under compression. The mechanical properties (maximum strength 1939 MPa, fracture strain 13.5%) of the ternary Ti-Fe-Sn (2 ≤ x ≤ 6) are considerably improved compared to the Ti70.5Fe29.5 binary alloy (1733 MPa, 3.4%). The change in the morphology of the eutectic, the microstructure refinement, structural fluctuations, and supersaturation in the β-Ti phase, and the elastic properties of nanophases are crucial factors for improving the plastic deformability of the ultrafine eutectic alloys without presence of any additional micrometer-size toughening phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.He, G., Eckert, J., Löser, W., Schultz, L.Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003)CrossRefGoogle ScholarPubMed
2.Das, J., Löser, W., Kühn, U., Eckert, J., Roy, S.K., Schultz, L.High-strength Zr-Nb-(Cu,Ni,Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 (2003)Google Scholar
3.Das, J., Güth, A., Klauss, H.J., Mickel, C., Löser, W., Eckert, J., Roy, S.K., Schultz, L.Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scr. Mater. 49, 1189 (2003)CrossRefGoogle Scholar
4.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.“Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005)Google Scholar
5.Wang, Y.M., Chen, M.W., Zhou, F.H., Ma, E.High tensile ductility in a nanostructured metal. Nature 419, 912 (2002)Google Scholar
6.Ma, E.Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49 (2006)Google Scholar
7.Sun, B.B., Sui, M.L., Wang, Y.M., Li, Y., He, G., Eckert, J., Ma, E.Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility. Acta Mater. 54, 1349 (2006)CrossRefGoogle Scholar
8.He, G., Löser, W., Eckert, J.In situ formed Ti-Cu-Ni-Sn-Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003)CrossRefGoogle Scholar
9.He, G., Eckert, J., Löser, W., Hagiwara, M.Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti–Cu–Ni–Sn–Nb alloys. Acta Mater. 52, 3035 (2004)CrossRefGoogle Scholar
10.He, G., Hagiwara, M.Effect of composition on microstructure and compressive mechanical properties in Ti–Cu–Fe–Sn–Nb alloys. Mater. Trans., JIM 45, 1555 (2004)Google Scholar
11.He, G., Hagiwara, M.Ti–Cu–Ni(Fe,Cr,Co)–Sn–Ta(Nb) alloys with potential for biomedical applications. Mater. Trans., JIM 45, 1120 (2004)CrossRefGoogle Scholar
12.Woodcock, T.G., Kusy, M., Mato, S., Alcala, G., Thomas, J., Löser, W., Gebert, A., Eckert, J., Schultz, L.Formation of a metastable eutectic during the solidification of the alloy Ti60Cu14Ni12Sn4Ta10. Acta Mater. 53, 5141 (2005)Google Scholar
13.Zhang, T., Inoue, A.Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans., JIM 39, 1001 (1998)CrossRefGoogle Scholar
14.Louzguine, D.V., Louzguina, L.V., Kato, H., Inoue, A.Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53, 2009 (2005)Google Scholar
15.Louzguine, D.V., Kato, H., Louzguina, L.V., Inoue, A.High-strength binary Ti-Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004)Google Scholar
16.Kim, K.B., Das, J., Baier, F., Eckert, J.Propagation of shear bands in Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite during deformation. Appl. Phys. Lett. 86, 171909 (2005)CrossRefGoogle Scholar
17.Kim, K.B., Das, J., Xu, W., Zhang, Z.F., Eckert, J.Microscopic deformation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructure-dendrite composite. Acta Mater. 54, 3701 (2006)CrossRefGoogle Scholar
18.Park, J., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., Eckert, J.Propagation of shear bands and accommodation of shear strain in the FeNbAl ultrafine eutectic-dendrite composite. Appl. Phys. Lett. 92, 091910 (2008)Google Scholar
19.Eckert, J., Das, J., Kim, K.B.Nanostructured composites: Ti-base alloysThe Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel Dekker, New York 2006)1Google Scholar
20.Das, J., Kim, K.B., Baier, F., Löser, W., Eckert, J.High-strength Ti-base ultrafine eutectic with enhanced ductility. Appl. Phys. Lett. 87, 161907 (2005)CrossRefGoogle Scholar
21.Das, J., Eckert, J., Theissmann, R.Structural short-range order of the β-Ti phase in bulk Ti-Fe-Sn nanoeutectic composites. Appl. Phys. Lett. 89, 261917 (2006)Google Scholar
22.Kurz, W., Fisher, D.J.Fundamentals of Solidification 4th ed. (Trans Tech Publications, Geneva, Switzerland 1998)Google Scholar
23.Smithells Metals Reference Book edited by E.A. Brandes and G. Brook (Butterworth-Heinemann, Woburn, MA 1992)22Google Scholar
24.Parlapanska, S., Parlapanski, D.Corrosion behavior of mechanically alloyed Ti-Si samples. Corros. Sci. 39, 1321 (1997)CrossRefGoogle Scholar
25.Massalski, T.B., Okamoto, H., Subramanian, P.R., Kacprzak, L.Binary Alloy Phase Diagrams 2nd ed. (ASM International, Materials Park, OH 1990)Google Scholar
26.Dieter, G.E.Mechanical Metallurgy 3rd ed. (McGraw-Hill, New York 1988)Google Scholar
27.Choi-Yim, H., Xu, D.H., Lind, M.L., Löffer, J.F., Johnson, W.L.Structure and mechanical properties of bulk glass-forming Ni-Nb-Sn alloys. Scr. Mater. 54, 187 (2006)Google Scholar
28.PCPDFWIN, Version 2.2, JCPDS International Centre for Diffraction Data (2001)Google Scholar
29.Young, R.A.Introduction to the Rietveld Method (Oxford University Press, Oxford, UK 1993)Google Scholar
30.Srinavasta, R.M., Eckert, J., Löser, W., Dhindaw, B.K., Schultz, L.Eutectic microstructure evaluation in casting processes for bulk amorphous alloys. Mater. Trans., JIM 43, 1670 (2002)Google Scholar
31.de Fontaine, D.Configurational thermodynamics of solid solutions. Solid State Phys. 34, 73 (1979)Google Scholar
32.Kanazaki, H.Point defects in face-centered cubic lattice-I distortion around defects. J. Phys. Chem. Solids 2, 24 (1957)Google Scholar
33.Sinkler, W., Luzzi, D.E.An electron diffraction investigation of the diffuse ω structure in quenched Ti-3d transition metal alloys. Acta Metall. Mater. 42, 1249 (1994)Google Scholar
34.Yang, J., Ma, J., Liu, W.M., Bi, Q.L., Xue, Q.Large-scale Fe-C nanoeutectic alloy prepared by a self-propagating high-temperature synthesis casting route. Scr. Mater. 58, 1074 (2008)Google Scholar
35.Fleischer, R.L., Gilmore, R.S., Zabala, R.J.Elastic moduli of polycrystalline, intermetallic compounds of titanium. J. Appl. Phys. 64, 2964 (1988)Google Scholar
36.Kraft, R.W., Albright, D.L.Microstructure of unidirectionally solidified Al-CuAl2 eutectic. Trans. Metall. Soc. AIME 221, 157 (1961)Google Scholar
37.Porter, D.A., Easterling, K.E.Phase Transformation in Metals and Alloys (Van Nostrand Reinhold, Berkshire, UK 1981)231Google Scholar
38.Jackson, K.A., Hunt, J.D.Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129 (1966)Google Scholar
39.Cline, H.E., Walter, J.L.The effect of alloy additions on the rod-plate transition in the eutectic NiAl-Cr. Metall. Mater. Trans. B 1, 2907 (1970)Google Scholar
40.Cline, H.E., Walter, J.L.Structures and properties of cobalt base-TaC eutectic alloys. Metall. Mater. Trans. B 4, 1775 (1973)Google Scholar
41.Pekarskaya, E., Kim, C.P., Johnson, W.L.In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001)Google Scholar
42.Das, J., Kim, K.B., Xu, W., Löser, W., Eckert, J.Formation of ductile ultrafine eutectic structure in Ti-Fe-Sn alloy. Mater. Sci. Eng., A 449–451, 737 (2007)Google Scholar
43.Das, J., Ettingshausen, F., Eckert, J.Ti-base nanoeutectic-hexagonal structured (D019) dendrite composite. Scr. Mater. 58, 631 (2008)Google Scholar
44.Louzguine-Luzgin, D., Louzguina-Luzgina, L., Kato, H., Inoue, A.Investigation of high strength metastable hypereutectic ternary Ti–Fe–Co and quaternary Ti–Fe–Co–(V, Sn) alloys. J. Alloys Compd. 434, 32 (2007)Google Scholar
45.Hashimoto, T., Nakamura, M., Takeuchi, S.Plastic deformation of Ti3Sn. Mater. Trans., JIM 31, 195 (1990)Google Scholar
46.Jones, P., Edington, J.Slip systems in the intermetallic compound Ti3Sn. Philos. Mag. 27, 393 (1973)Google Scholar
47.Koizumi, Y., Ogata, S., Minamino, Y., Tsuji, N.Energies of conservative and non-conservative antiphase boundaries in Ti3Al a first principles study. Philos. Mag. 86, 1243 (2006)Google Scholar
48.Louzguine, D.V., Louzguina, L.V., Polkin, V.I., Inoue, A.Deformation-induced transformations in Ti60Fe20Co20 alloy. Scr. Mater. 57, 445 (2007)Google Scholar
49.Das, J., Kim, K.B., Zhang, Z.F., He, G., Müller, C., Eckert, J.Deformation and fracture of Ti-base nanostructured composite. Z. Metallkd. 99, 985 (2008)Google Scholar
50.Fujita, H., Fujita, N.Heterogeneous deformation and mechanical strength of materials: Approach to the theoretical strength. Radiat. Eff. Defects Solids 157, 85 (2002)Google Scholar
51.Han, J.H., Kim, K.B., Yi, S., Park, J.M., Kim, D.H., Pauly, S., Eckert, J.Influence of a bimodal eutectic structure on the plasticity of a (Ti70.5Fe29.5)91Sn9 ultrafine composite. Appl. Phys. Lett. 93, 201906 (2008)Google Scholar
52.He, G., Eckert, J., Hagiwara, M.Mechanical properties and fracture behavior of the modified Ti-base bulk metallic glass-forming alloys. Mater. Lett. 60, 656 (2006)Google Scholar
53.He, G., Hagiwara, M., Eckert, J.Effect of Sn on microstructure and mechanical properties of Ti-base dendrite/ultrafine-structured multicomponent alloys. Metall. Mater. Trans. A 35, 3605 (2004)Google Scholar
54.Kumar, K.S.Physical Metallurgy and Processing of Intermetallic Compounds (Chapman and Hall, New York 1996)Google Scholar
55.Lewandowski, J.J., Wang, W.H., Greer, A.L.Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005)Google Scholar
56.Hecker, S.S., Rohr, D.L., Stein, D.F.Brittle fracture in iridium. Metall. Mater. Trans. A 9, 481 (1978)Google Scholar
57.Louzguina, L.V., Louzguine, D.V., Inoue, A.Influences of additional alloying elements (V, Ni, Cu, Sn, B) on structure and mechanical properties of high-strength hypereutectic Ti–Fe–Co bulk alloys. Intermetallics 14, 255 (2006)Google Scholar
58.Akahori, T., Niinomi, M., Suzuki, A.Improvement in mechanical properties of dental cast Ti-6Al-7Nb by thermochemical processing. Metall. Mater. Trans. A 33, 503 (2002)Google Scholar
59.Sakaguchi, N., Niinomi, M., Akahori, T., Takeda, J., Toda, H.Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr. Mater. Sci. Eng., C 25, 370 (2005)Google Scholar
60.Hobart, R.Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944 (1965)Google Scholar