Skip to main content Accessibility help

The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites

  • Ioannis N. Mastorakos (a1), Rachel L. Schoeppner (a2), Brian Kowalczyk (a1) and David F. Bahr (a3)


Nanoscale metallic material composites consisting of bilayer and trilayer systems of two and three different metallic alternating layers show significant gains in hardness over monolithic single phase films. One of the main applications of these composites can be as protective coatings to technical components to increase their lifespan acting as a mechanical barrier to the carriers of permanent deformation. In this work, we study the strength of bilayer structures made of alternating layers of niobium (Nb) and copper–nickel (Cu–Ni) alloys. The effect of the layer size and composition on strength and hardening as well as the effect of the metal–alloy interface on the dislocation motion is investigated. The simulations reveal a close relationship between the atomic composition of the alloy and the hardening of the film. The results are also compared with experimental findings on nanopillars made of similar structures, and strong similarities are revealed and discussed.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Gary L. Messing



Hide All
1. Misra, A. and Kung, H.: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3(4), 217 (2001).
2. Hoagland, R., Mitchell, T., Hirth, J., and Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82(4), 643 (2002).
3. Bellou, A., Overman, C.T., Zbib, H.M., Bahr, D.F., and Misra, A.: Strength and strain hardening behavior of Cu-based bilayers and trilayers. Scr. Mater. 64(7), 641 (2011).
4. Wang, Y., Misra, A., and Hoagland, R.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54(9), 1593 (2006).
5. Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59(9), 62 (2007).
6. McKeown, J., Misra, A., Kung, H., Hoagland, R.G., and Nastasi, M.: Microstructures and strength of nanoscale Cu–Ag multilayers. Scr. Mater. 46(8), 593 (2002).
7. Economy, D.R., Schultz, B.M., and Kennedy, M.S.: Impacts of accelerated aging on the mechanical properties of Cu–Nb nanolaminates. J. Mater. Sci. 47(19), 6986 (2012).
8. Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, D.J.: Structure and mechanical properties of Cu–X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39(4/5), 555 (1998).
9. Abdolrahim, N., Zbib, H.M., and Bahr, D.F.: Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014).
10. Mastorakos, I.N. and Abdolrahim, N.: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).
11. Gale, J.D., Achuthan, A., and Morrison, D.J.: Indentation size effect (ISE) in copper subjected to severe plastic deformation (SPD). Metall. Mater. Trans. A 45(5), 2487 (2014).
12. Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94(17), 173114 (2009).
13. Shao, S., Zbib, H.M., Mastorakos, I.N., and Bahr, D.F.: The void nucleation strengths of the Cu–Ni–Nb-based nanoscale metallic multilayers under high strain rate tensile loadings. Comput. Mater. Sci. 82, 435 (2014).
14. Mitlin, D., Misra, A., Radmilovic, V., Nastasi, M., Hoagland, R., Embury, D., Hirth, J., and Mitchell, T.: Formation of misfit dislocations in nanoscale Ni–Cu bilayer films. Philos. Mag. 84(7), 719 (2004).
15. Mitlin, D., Misra, A., Mitchell, T., Hirth, J., and Hoagland, R.: Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos. Mag. 85(28), 3379 (2005).
16. Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005).
17. Akasheh, F., Zbib, H., Hirth, J., Hoagland, R., and Misra, A.: Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J. Appl. Phys. 101(8), 84314 (2007).
18. Misra, A., Demkowicz, M., Wang, J., and Hoagland, R.: The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60(4), 39 (2008).
19. Mastorakos, I.N., Bellou, A., Bahr, D.F., and Zbib, H.M.: Size-dependent strength in nanolaminate metallic systems. J. Mater. Res. 26(10), 1179 (2011).
20. Barshilia, H.C. and Rajam, K.S.: Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol. 155(2–3), 195 (2002).
21. Wang, J. and Misra, A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15(1), 20 (2011).
22. Zhang, J.Y., Zhang, X., Liu, G., Zhang, G.J., and Sun, J.: Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scr. Mater. 63(1), 101 (2010).
23. Zbib, H.M., Overman, C.T., Akasheh, F., and Bahr, D.: Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int. J. Plast. 27(10), 1618 (2011).
24. Shao, S., Zbib, H.M., Mastorakos, I.N., and Bahr, D.F.: Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J. Appl. Phys. 112(4), 44307 (2012).
25. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst., London 174, 25 (1953).
26. Schoeppner, R.L., Wheeler, J.M., Zechner, J., Michler, J., Zbib, H.M., and Bahr, D.F.: Coherent interfaces increase strain-hardening behavior in tri-component nano-scale metallic multilayer thin films. Mater. Res. Lett. 3(2), 114 (2015).
27. Verdier, M., Huang, H., Spaepen, F., Embury, J.D., and Kung, H.: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. 86(32), 5009 (2006).
28. Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48(12), 3261 (2000).
29. Wang, J., Zhou, Q., Shao, S., and Misra, A.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5(1), 1 (2017).
30. Mara, N., Bhattacharyya, D., Dickerson, P., Hoagland, R., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92(23), 231901 (2008).
31. Rabe, R., Breguet, J-M., Schwaller, P., Stauss, S., Haug, F-J., Patscheider, J., and Michler, J.: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469–470, 206 (2004).
32. Wheeler, J.M. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84(4), 45103 (2013).
33. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Physiol. 117, 1 (1995).
34. Daw, M. and Baskes, M.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1983).
35. Voter, A.F.: Intermetallic Compounds. Principles and Practice (Wiley, Chichester, 1995).
36. Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86(23), 3537 (2006).
37. Zhang, Q., Lai, W.S., and Liu, B.X.: Atomic structure and physical properties of Ni–Nb amorphous alloys determined by an n-body potential. J. Non-Cryst. Solids 261(1–3), 137 (2000).
38. Melchionna, S., Ciccotti, G., and Lee Holian, B.: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78(3), 533 (1993).
39. Hoagland, R., Kurtz, R., and Henager, C.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50(6), 775 (2004).
40. Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
41. Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (John Wiley & Sons, Inc, Hoboken, NJ, 2012).
42. Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20(8), 85007 (2012).


Related content

Powered by UNSILO

The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites

  • Ioannis N. Mastorakos (a1), Rachel L. Schoeppner (a2), Brian Kowalczyk (a1) and David F. Bahr (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.