Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T13:59:59.228Z Has data issue: false hasContentIssue false

Effect of process variables on the structure, residual stress, and hardness of sputtered nanocrystalline nickel films

Published online by Cambridge University Press:  31 January 2011

R. Mitra
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
R. A. Hoffman
Affiliation:
Advanced Coating Technology Group, Northwestern University, Evanston, Illinois 60208
A. Madan
Affiliation:
Advanced Coating Technology Group, Northwestern University, Evanston, Illinois 60208
J. R. Weertman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nanocrystalline nickel films of about 0.1 μm thickness grown by sputtering with and without substrate bias possessed average grain sizes of 9–25 nm. Variation in substrate bias at room and liquid nitrogen temperature of deposition strongly affected grain structure and size distribution. Qualitative studies of film surfaces showed variation in roughness and porosity level with substrate bias and film thickness (maximum of 8 μm). The films had tensile residual stress, which varied with deposition conditions. The hardness values were much higher than those of coarse-grained nickel but decreased with an increase in the film thickness because of grain growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

References

REFERENCES

1.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
2.Weertman, J.R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., and VanSwygenhoven, H., MRS Bull. 24 (2), 44 (1999).CrossRefGoogle Scholar
3.Elliot, B.R., Ph.D. Dissertation, Northwestern University, Evanston, IL (December 1998).Google Scholar
4.Zupan, M., Legros, M., Elliott, B.R., and Hernker, K.J., in Advanced Materials for the 21st Century: The JuliaR. Weertman Symposium, edited Chung, Y-W., Dunand, D.C., Liaw, P.K., and Olson, G.B. (TMS, Warrendale, PA, 1999), p. 525.Google Scholar
5.Birringer, R., Gleiter, H., Klein, H-P., and Marquardt, P., Phys. Lett. 102A, 365 (1984).CrossRefGoogle Scholar
6.Mitra, R., Ungar, T., Morita, T., Sanders, P.G., and Weertman, J.R., in Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, edited by Chung, Y-W., Dunand, D.C., Liaw, P.K., and Olson, G.B. (TMS, Warrendale, PA, 1999), p. 553.Google Scholar
7.Agnew, S.R., Elliott, B.R., Youngdahl, C.J., Hemker, K.J., and Weertman, J.R., in Modeling of Structure and Mechanics of Materials from Microscale to Product, edited by. Carstensen, J.V., Leffers, T., Lorentzen, T., Pedersen, O.B., Sørensen, B.F., and Winther, G. (Risø National Laboratory, Roskilde, Denmark, 1998), p. 1.Google Scholar
8.EI-Sherik, A.M., Erb, U., Palumbo, G., and Aust, K.T., Scripta Metall. Mater. 27, 1185 (1992).CrossRefGoogle Scholar
9.Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E., Nanostruct. Mater. 11, 343 (1999).CrossRefGoogle Scholar
10.Aust, K.T., Can. Metall. Quart. 34, 165 (1994).Google Scholar
11.Morris, D.G. and Morris, M.A., Acta Metall. Mater. 39, 1763 (1991).CrossRefGoogle Scholar
12.Hahn, H. and Averback, R.S., J. Appl. Phys. 67, 1113 (1990).CrossRefGoogle Scholar
13.Chow, G.M. and Edelstein, A.S., Nanostr. Mater. 1, 107 (1992).CrossRefGoogle Scholar
14.Savader, J.B., Scanlon, M.R., Carnrnarata, R.C., Smith, D.T., and Heyzelden, C., Scripta Metall. 36, 29 (1997).CrossRefGoogle Scholar
15.Misra, A. and Nastasi, M., J. Mater. Res. 14, 4466 (1999).CrossRefGoogle Scholar
16.Musil, J. and Regent, F., J. Vac. Sci. Technol. A 16, 3301 (1998).CrossRefGoogle Scholar
17.Rittner, M.N., Eastman, J.A., and Weertman, J.R., Scripta Metall. Mater. 31, 841 (1994).CrossRefGoogle Scholar
18.Doljack, F.A. and Hoffman, R.W., Thin Solid Films 12, 71 (1972).CrossRefGoogle Scholar
19.Hentzell, H.T.G., Anderson, B., and Karlsson, S-E., Acta Metall. 31, 2103 (1983).CrossRefGoogle Scholar
20.Grovenor, C.R.M., Hentzell, H.T.G., and Smith, D.A., Acta Metall. 32, 773 (1984).CrossRefGoogle Scholar
21.Dahlgren, S.D., Nicholson, W.L., Merz, M.D., Bollmann, W., Devlin, J.F., and Wang, R., Thin Solid Films 40, 345 (1977).CrossRefGoogle Scholar
22.Mattox, D.M. and Kominiak, G.J., J. Vac. Sci. Technol. 9, 528 (1972).CrossRefGoogle Scholar
23.Bland, R.D., Kominiak, G.J., and Mattox, D.M., J. Vac. Sci. Tech. 11, 671 (1974).CrossRefGoogle Scholar
24.Bunshah, R.F., Vacuum 20, 353 (1977).CrossRefGoogle Scholar
25.Tu, K.N., in Treatise on Materials Science and Technology, Vol. 24: Preparation and Properties of Thin Films, edited by. Tu, K.N. and Rosenberg, R. (Academic Press, New York, 1982), p. 237.CrossRefGoogle Scholar
26.Maissel, L.I., in Handbook of Thin Film Technology, edited by Maissel, L.I. and Glang, R., (McGraw Hill, New York, 1983), p. 1.Google Scholar
27.Machlin, E.S., Materials Science in Microelectronics: The relationships between thin film processing and structure (Giro Press, Cartonon-Hudson, NY, 1995) p. 157.Google Scholar
28.Abermann, R., Vacuum 41, 1279 (1990).CrossRefGoogle Scholar
29.Doerner, M.F. and Nix, W.D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).CrossRefGoogle Scholar
30.Movchan, B.A. and Demshishin, A.V., Fiz. Met. Metalloved. 28, 653 (1969).Google Scholar
31.Thornton, J.A., J. Vac. Sci. Techol. 11, 666 (1974).CrossRefGoogle Scholar
32.Stoney, G.G., Proc. Roy. Soc. London A82, 172 (1909).Google Scholar
33.Gai, P.L., Du, E.I. Pont De Nemours and Company (Inc.), Wilmington, DE (private communication).Google Scholar
34.Schwarzer, R.A., in Trends and New Applications of Thin Films, edited by Hoffman, H. (Trans Tech, Uetikon-Zuerich, Switzerland., 1998); Mater. Sci. Forum 287–288, 38 (1998).Google Scholar
35.Wong, C.C., Smith, H.I., and Thompson, C.V., Appl. Phys. Lett. 48, 335 (1986).CrossRefGoogle Scholar
36.Powder Diffraction File, Card No. 4–850 Inorganic Phases, JCPDS International Centre for Diffraction Data, (Swarthmore, PA, 1989).Google Scholar
37.Thornton, J.A., Ann. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
38.Misra, A. and Nastasi, M., Appl. Phys. Lett. 75, 3123 (1999).CrossRefGoogle Scholar
39.Zielinski, E.M., Vinci, R.P., and Bravman, J.C., J. Appl. Phys. 76, 4516 (1994).CrossRefGoogle Scholar
40.Thompson, C.V., Ann. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
41.Haugen, E.B., Probabilistic Approaches to Design (John Wiley and Sons, New York, 1968), p.47.Google Scholar
42.Misra, A., Fayeulle, S., Kung, H., Mitchell, T.E., and Nastasi, M., Appl. Phys. Lett., 73, 891 (1998).CrossRefGoogle Scholar
43.Thornton, J.A., J. Vac. Sci. Tech. A 4, 3059 (1986).CrossRefGoogle Scholar
44.Fuks, M.Y., Palatnik, L.S., Koz’ma, A.A., Nechitaylo, A.A., and Grigor’yev, O.N., Fiz. Metal. Metalloved. 28, 645 (1969).Google Scholar
45.Mitra, R., Chiou, W.A., Weertman, J.R., and Hoffman, R., in Proc. Microscopy and Microanalysis, edited by Bailey, G.W., Jerome, W.G., McKernan, S., Mansfield, J.F. and Price, R.L. (Springer Verlag, NY, 1999), Vol. 5, Suppl. 2, p. 834.Google Scholar
46.Chopra, K.L., Thin Film Phenomena (McGraw-Hill, New York, 1969), p. 137.Google Scholar
47.Wang, P., Thompson, D.A., and Smeltzer, W.W., Nucl. Inst. Meth. Phy. Res. 87/8, 97 (1985).CrossRefGoogle Scholar
48.Wang, P., Thompson, D.A., and Smeltzer, W.W., Nucl. Inst. Meth. Phy. Res. B16, 288 (1986).CrossRefGoogle Scholar
49Atwater, H.A., Thompson, C.V.,, and Smith, H.I., J. Appl. Phys. 62, 2337 (1988).CrossRefGoogle Scholar
50.Liu, J.C., Li, J., and Mayer, J.W., in Processing and Characterization of Materials Using Ion Beams, edited by Rehn, L.E., Greene, J., and Smidt, F.A. (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989), pp. 297302.Google Scholar
51.Thornton, J.A., Thin Solid Films 40, 335 (1977).CrossRefGoogle Scholar
52.Winters, H.F. and Kay, E., J. Appl. Phys. 38, 3928 (1967).CrossRefGoogle Scholar
53.Garrison, B.J. and Winograd, N., J. Vac. Sci. Tech. 16, 789 (1979).CrossRefGoogle Scholar
54.Thompson-Russell, K.C. and Edington, J.W., Electron Microscope Specimen Preparation Techniques in Materials Science, Philips Technical Laboratory Monographs in Practical Electron Microscopy in Materials Science [(Philips, N.V.’) Gloeilampenfabrieken, Eindhoven, The Netherlands, 1977], Vol. 5, pp. 13, 14.CrossRefGoogle Scholar
55.Eckertova, L., Physics of Thin Films (Plenum Press, New York, 1986), Chap. 4, p. 96.Google Scholar
56.Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys (Chapman and Hall, London, United Kingdom, 1991), Chap. 3, p. 110.Google Scholar
57.Beeck, O., Advan. Catalysis 2, 151 (1950).Google Scholar
58.Brennan, D., Hayward, D.O., and Trapnell, B.M.W., Proc. Roy. Soc. London A256, 81 (1960).Google Scholar
59.Sanders, P.G., Ph.D. Dissertation, Northwestern University, Evanston, IL (1996).Google Scholar
60.Shull, A.L. and Spaepen, F., J. Appl. Phys. 80, 6243 (1996).CrossRefGoogle Scholar
61.Nix, W.D. and Clemens, B.M., J. Mater. Res. 14, 3467 (1999).CrossRefGoogle Scholar
62.Hoffman, R.W., Thin Solid Films 34, 185 (1976).CrossRefGoogle Scholar
63.Weertman, J. and Weertman, J.R., Elementary Dislocation Theory, Macmillan Series in Materials Science (Collier-Macmillan, Toronto, Canada, 1964), Chap. 6, p. 168.Google Scholar
64.Fleischer, R.L., in The Strengthening of Metals, edited by Peckner, D. (Reinhold Press, New York, 1964), p. 93.Google Scholar
65.Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials (John Wiley and Sons, New York, 1989), Chap. 1, p.3.Google Scholar
66.Klokholm, E. and Berry, B.S., J. Electrochem. Soc. 115, 823 (1968).CrossRefGoogle Scholar