Skip to main content Accessibility help
×
Home

Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles

  • Özlem Altıntaş Yıldırım (a1) and Caner Durucan (a1)

Abstract

Low temperature (25 °C–80 °C) synthesis of zinc oxide (ZnO) nanoparticles (<20 nm) at short synthesis periods (∼30 min) was achieved by precipitation. The precipitation system was formed using zinc acetate dihydrate as zinc source, ethylene glycol (EG) as solvent and polyvinyl pyrrolidone (PVP) as chelating agent. The size of spherical ZnO nanoparticles was manipulated by the choice of precipitation temperature (13.0 ± 1.9 nm at 25 °C and 9.0 ± 1.3 nm at 80 °C), which essentially changes the nature of adsorption events between ZnO crystals and organic molecules. The particle size can also be regulated by the amount of chelating agent as a result of further enhancement in adsorption between ZnO crystals and organic additives. The spherical ZnO nanoparticles were agglomerated into triangular form when different solvent was used – by substituting water for EG, which has different adsorption ability. Accordingly, formation and growth mechanisms controlling the size and morphology of ZnO nanoparticles have been proposed.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: cdurucan@metu.edu.tr

References

Hide All
1.Gupta, T.K.: Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817 (1990).
2.Singhai, M., Chhabra, V., Kang, P., and Shah, D.O.: Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol of microemulsion. Mater. Res. Bull. 32, 239 (1997).
3.Gao, T. and Wang, T.H.: Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Appl. Phys. A 80, 1451 (2005).
4.Liao, L., Lu, H.B., Li, J.C., He, H., Wang, D.F., Fu, D.J., Liu, C., and Zhang, W.F.: Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 111, 1900 (2007).
5.Li, Y.B., Bando, Y., and Golberg, D.: ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Appl. Phys. Lett. 84, 3603 (2004).
6.Cheng, C-L., Chao, S-H., and Chen, Y-F.: Enhancement of field emission in nanotip-decorated ZnO nanobottles. J. Cryst. Growth 311, 4381 (2009).
7.Ramamoorthy, K., Sanjeeviraja, C., Jayachandran, M., Sankaranarayanan, K., Bhattacharya, P., and Kukreja, L.M.: Preparation and characterization of ZnO thin films on InP by laser-molecular beam epitaxy technique for solar cells. J. Cryst. Growth 226, 281 (2001).
8.Choopun, S., Tubtimtae, A., Santhaveesuk, T., Nilphai, S., Wongrat, E., and Hongsith, N.: Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl. Surf. Sci. 256, 998 (2009).
9.Liu, B. and Zeng, H.C.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003).
10.Pal, U. and Santiago, P.: Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 109, 15317 (2005).
11.Ayouchi, R., Martin, F., Leinen, D., and Ramos-Barrado, J.R.: Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. J. Cryst. Growth 247, 497 (2003).
12.Htay, M.T., Hashimoto, Y., Momose, N., and Ito, K.: Position-selective growth of ZnO nanowires by ultrasonic spray pyrolysis. J. Cryst. Growth 311, 4499 (2009).
13.Ristic, M., Music, S., Ivanda, M., and Popovic, S.: Sol-gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 397, L1 (2005).
14.Li, J., Srinivasan, S., He, G.N., Kang, J.Y., Wu, S.T., and Ponce, F.A.: Synthesis and luminescence properties of ZnO nanostructures produced by the sol-gel method. J. Cryst. Growth 310, 599 (2008).
15.Ahmad, T., Vaidya, S., Sarkar, N., Ghosh, S., and Ganguli, A.K.: Zinc oxalate nanorods: A convenient precursor to uniform nanoparticles of ZnO. Nanotechnology 17, 1236 (2006).
16.Yildirim, O.A. and Durucan, C.: Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J. Alloys Compd. 506, 944 (2010).
17.Tao, D., Qian, W., Huang, Y., and Wei, F.: A novel low-temperature method to grow single-crystal ZnO nanorods. J. Cryst. Growth 271, 353 (2004).
18.Wang, J. and Gao, L.: Wet chemical synthesis of ultra long and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 13, 2551 (2003).
19.Wang, C., Shen, E., Wang, E., Gao, L., Kang, Z., Tian, C., Lan, Y., and Zhang, C.: Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Mater. Lett. 59, 2867 (2005).
20.Xie, R., Li, D., Zhang, H., Yang, D., Jiang, M., Sekiguchi, T., Liu, B., and Bando, Y.: Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. J. Phys. Chem. B 110, 19147 (2006).
21.Sui, X., Liu, Y., Shao, C., Liu, Y., and Xu, C.: Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant. Chem. Phys. Lett. 424, 340 (2006).
22.Drelinkiewicz, A., Hasik, M., Quillard, S., and Paluszkiewicz, C.: Infrared and Raman studies of palladium-nitrogen-containing polymers interactions. J. Mol. Struct. 511512, 205 (1999).
23.Silva, R.F. and Zaniquelli, M.E.: Morphology of nanometric size particulate aluminum-doped zinc oxide films. Colloids Surf., A 198200, 551 (2002).
24.Wahab, R., Kim, Y-S., Lee, K., and Shin, H-S.: Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J. Mater. Sci. 45, 2967 (2010).
25.Studenikin, S.A., Golego, N., and Cocivera, M.: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998).
26.Yang, C.L., Wang, J.N., Ge, W.K., Guo, L., Yang, S.H., and Shen, D.Z.: Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J. Appl. Phys. 90, 4489 (2001).
27.Gao, P.X. and Wang, Z.L.: Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 108, 7534 (2004).
28.Wang, Z.L.: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, R829 (2004).
29.Zhang, L. and Zhu, Y.J.: ZnO micro- and nanostructures: Microwave-assisted solvothermal synthesis, morphology control and photocatalytic properties. Appl. Phys. A 97, 847 (2009).
30.Rashid, M.H., Raula, M., Bhattacharjee, R.R., and Mandal, T.K.: Low-temperature polymer-assisted synthesis of shape-tunable zinc oxide nanostructures dispersible in both aqueous and nonaqueous media. J. Colloid Interface Sci. 339, 249 (2009)
31.Ghoshal, T., Kar, S., and Chaudhuri, S.: ZnO Doughnuts: Controlled synthesis, growth mechanism and optical properties. Cryst. Growth Des. 7, 136 (2006).
32.Wei, S.F., Lian, J.S., and Jiang, Q.: Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Appl. Surf. Sci. 255, 6978 (2009).
33.Zhang, J., Liu, H., Wang, Z., and Ming, N.: Low-temperature growth of ZnO with controllable shapes and band gaps. J. Cryst. Growth 310, 2848 (2008).
34.Pacholski, C., Kornowski, A., and Weller, H.: Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188 (2002).
35.Yao, C.W., Wu, H.P., Ge, M.Y., Yang, L., Zeng, Y.W., Wang, Y.W., and Jiang, J.Z.: Triangle-shape ZnO prepared by thermal decomposition. Mater. Lett. 61, 3416 (2007).
36.Muta, H., Ishida, K., Tamaki, E., and Satoh, M.: An IR study on ion-specific and solvent-specific swelling of poly (N-vinyl-2-pyrrolidone) gel. Polymer 43, 103 (2002).
37.Bai, J., Li, Y., Zhang, C., Liang, X., and Yang, Q.: Preparing AgBr nanoparticles in poly (vinyl pyrrolidone) (PVP) nanofibers. Colloids Surf., A 329, 165 (2008).
38.Zhang, Z., Shao, C., Gao, F., Li, X., and Liu, Y.: Enhanced ultraviolet emission from highly dispersed ZnO quantum dots, embedded in poly (vinyl pyrrolidone) electrospun nanofibers. J. Colloid Interface Sci. 347, 215 (2010).
39.Wahab, R., Ansari, S.G., Kim, Y.S., Seo, H.K., Kim, G.S., Khang, G., and Shin, H-S.: Low temperature solution synthesis and characterization of ZnO nanoflowers. Mater. Res. Bull. 42, 1640 (2007).
40.Haase, M., Weller, H., and Henglein, A.: Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem. 92, 482 (1988).
41.Singla, M.L., Shafeeq, M., and Kumar, M.M.: Optical characterization of ZnO nanoparticles capped with various surfactants J. Lumin. 129, 434 (2009).
42.Willander, M., Nur, O., Sadaf, J.R., Qadir, M.I., Zaman, S., Zainelabdin, A., Bano, N., and Hussain, I.: Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643 (2010).
43.Kang, H.S., Kang, J.S., Kim, J.W., and Lee, S.Y.: Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J. Appl. Phys. 95, 1246 (2004).
44.Liu, M., Kitai, A.H., and Mascher, P.: Point defects and luminescence-centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35 (1992).

Keywords

Related content

Powered by UNSILO

Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles

  • Özlem Altıntaş Yıldırım (a1) and Caner Durucan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.