Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-25T08:48:50.411Z Has data issue: false hasContentIssue false

Effect of PO2 and Ag on the phase formation of the Bi(Pb)-2223 superconductor

Published online by Cambridge University Press:  31 January 2011

W. Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
L. P. Cook
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
W. Greenwood
Affiliation:
Geology Department, University of Maryland, College Park, Maryland 20742
Get access

Abstract

The chemical reactions and the compositional characteristics of liquids which lead to the phase formation of the Bi(Pb)-2223 [(Bi, Pb): Sr: Ca: Cu: O] superconductor have been studied for a precursor composition of Bi1.8Pb0.4Sr2Ca2.2Cu3Ox. The combined techniques of quenching, powder x-ray diffraction, differential thermal/thermogravimetric analysis (DTA/TGA), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to characterize the subsolidus phases and the presence of liquid. Samples were annealed under purified air and under a volume fraction mixture of 7.5% O2/92.5% Ar. The effects of Ag in both the pure air and the 7.5% O2/92.5% Ar experiments were also studied. Results are discussed with respect to their processing implications.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weill, F., Darriet, B., Ducau, M., Darriet, J., and Etourneau, J., Solid State Commun. 77, 679 (1991).Google Scholar
2.Sinclair, D. C., Irvine, J. T. S., and West, A. R., J. Mater. Chem. 1 (1), 147148 (1991).Google Scholar
3.Majewski, P., Kaesche, S., Su, H-L., and Aldinger, F., Physica C 221, 295 (1994).CrossRefGoogle Scholar
4.Boekhlt, M., Gotz, D., Idink, H., Fleuster, M., Hah, T., Woermann, E., and Güntherodt, G., Physica C 176, 420 (1991).CrossRefGoogle Scholar
5.Ikeda, Y., Hiroi, Z., Ito, H., Shimomura, S., Takano, M., and Bando, Y., Physica C 165, 189 (1989).Google Scholar
6.Iwai, Y., Hoshi, Y., Saito, H., and Takata, M., Physica C 170, 319 (1990).CrossRefGoogle Scholar
7.Wakata, Y., Namba, T., Takada, J., and Egi, T., Physica C 219, 366 (1994).Google Scholar
8.Dorris, S. E., Pitz, M. A., Dawley, J. T., and Trapp, D. J., J. Electron. Mater. 24 (12), 832 (1995).CrossRefGoogle Scholar
9.Kaufman, D. Y., Lanagan, M. T., Dorris, S. E., Dawley, J. T., Bloom, I. D., Hash, M.C., Chen, N., DeGuire, M.R., and Poeppel, R. B., Appl. Supercond. 1 (1/2), 8191 (1993).Google Scholar
10.Luo, J. S., Merchant, N., Maroni, V. A., Dorris, S. E., Lanagan, M. T., and Tani, B. S., J. Am. Ceram. Soc. 78, 27852789 (1995).CrossRefGoogle Scholar
11.Dou, S. X., Liu, H. K., Guo, Y. C., Bhasale, R., Hu, Q.Y., Babic, E., and Kusevic, I., Appl. Supercond. 2 (3/4), 191199 (1994).CrossRefGoogle Scholar
12.Malachevsky, M. T., Yill, P. L., and Gherardi, L., Appl. Supercond. 2 (1), 3340 (1994).CrossRefGoogle Scholar
13.Luo, J. S., Merchant, N., Maroni, V. A., Riley, G. N. Jr, and Carter, W. L., Appl. Phys. Lett. 63 (5), 690692 (1993).CrossRefGoogle Scholar
14.Li, Y., Li, C., and Zhou, L., Physica C 235–240, 488489 (1994).Google Scholar
15.Malozemoff, A. P., Li, Q., and Fleshler, S., unpublished.Google Scholar
16.Willis, J. O., Ray, R. D. II, Holesinger, T. G., Zhou, R., Salazar, K. V., Coulter, J. Y., Gingert, J. J., Phillips, D. S., and Peterson, D. E., Proceedings of the 7th US/Japan Workshop on High Temperature Superconductors, Tsukuba, Japan, 22–24 October 1995.Google Scholar
17.Sandhage, K. H., Riley, G. N. Jr, and Carter, W., J. Metals 43, 21 (1991).Google Scholar
18.Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibata, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Mag. 27, 1231 (1991).CrossRefGoogle Scholar
19.Wong-Ng, W. and Frieman, S.W., Superconducting Glass-Ceramics in BSCCO: Fabrication and Its Application, edited by Abe, Y. (World Scientific Publishing Co., Singapore, London, 1997), p. 1.Google Scholar
20.Wong-Ng, W. and Frieman, S.W., Appl. Supercond. 2 (3/4), 163 (1994).CrossRefGoogle Scholar
21.Massalker, Y., Sembira, A. N., and Baram, J., J. Mater. Res. 8, 2445 (1993).CrossRefGoogle Scholar
22.Bansal, N. P., J. Appl. Phys. 68 (3), 114 (1990).CrossRefGoogle Scholar
23.Chen, Y. L. and Stevens, R., J. Am. Ceram. Soc. 75 (5), 1150 (1992).CrossRefGoogle Scholar
24.Takei, H., Koike, M., Takeya, H., Suzuki, K., and Ichihara, M., Jpn. J. Appl. Phys. 28 (7), L11931196 (1989).Google Scholar
25.Morgan, P. E. D., Housley, R. M., Porter, J. R., and Ratti, J. J., Physica C (1992).Google Scholar
26.Luo, J. S., Faudot, F., Chevalier, J-P., Portier, R., and Michel, D., J. Solid State Chem. 89, 94 (1990).Google Scholar
27.Huang, Y.T., Liu, R.G., Liu, S.W., Wu, P.T., and Wang, W.N., Appl. Phys. Lett. 56 (8), 779 (1990).CrossRefGoogle Scholar
28.Shi, D., Boley, M. S., Xu, M., Vandervoort, K., Liao, Y. X., and Zangvil, A., Appl. Phys. Lett. 55 (7), 699 (1989).CrossRefGoogle Scholar
29.Uzumaki, T., Yamanaka, K., Kamehra, N., and Niwa, K., Jpn. J. Appl. Phys. 28 (1), L75 (1989).CrossRefGoogle Scholar
30.Huang, Y.T., Shel, C.Y., Wang, W.N., Hiang, C.K., and Lee, W.H., Physica C 169, 76 (1990).CrossRefGoogle Scholar
31.Xi, Z. and Zhou, L., J. Supercond. 6 (1), 55 (1993).Google Scholar
32.Gao, X-H., Li, J., Jiang, S-F., Gao, D., Zheng, G-D., and Gao, S., Physica C 244, 321 (1995).CrossRefGoogle Scholar
33.Gao, X-H., Gao, D., Li, J-H., Li, J., and Jiang, S-F., Physica C 229, 124 (1994).CrossRefGoogle Scholar
34.Xu, M., Finnemore, D. K., Balachandran, U., and Haldar, P., J. Appl. Phys. 78 (1), 360363 (1995).Google Scholar
35.Merchant, N., Luo, J. S., Maroni, V. A., Riley, G. N., and Carter, W. L., Appl. Phys. Lett. 65, 1039 (1994).Google Scholar
36.Drews, A. R., Cline, J. P., Vanderah, T.A., and Salazar, K. V., J. Mater. Res. 13, 574 (1998).CrossRefGoogle Scholar
37.Thurston, T. R., Haldar, P., Wang, Y.L., Suenaga, M., Jisrawi, N. M., and Wildgruber, U., J. Mater. Res. 12, 891 (1997).Google Scholar
38.Thurston, T. R., Wildgruber, U., Jisrawi, N., Haldar, P., Suenaga, M., and Wang, Y.L., J. Appl. Phys. 79 (6), 3122 (1997).CrossRefGoogle Scholar
39.Luo, J. S., Merchant, N., Maroni, V. A., Dorris, S. E., Lanagan, M. T., and Tani, B. S., J. Am. Ceram. Soc. 78, 27852789 (1995).Google Scholar
40.Merchant, N., Luo, J. S., Maroni, V.A., Riley, G. N., and Carter, W. L., Appl. Phys. Lett. 65 (8), 10391041 (1994).CrossRefGoogle Scholar
41.MacManus-Driscoll, J. L. and Bravman, J. C., J. Am. Ceram. Soc. 77 (9), 2305 (1994).CrossRefGoogle Scholar
42.Majewski, P., Sotelo, A., Szillat, H., Kaesche, S., and Aldinger, F., Physica C 275, 47 (1997).CrossRefGoogle Scholar
43.McCallum, R.W., Dennis, K.W., Margulies, L., and Kramer, M.J., Processing and Properties of Long Lengths of Superconductors, Proc. 1993 Fall TMS meeting, Pittsburgh, PA, October 17–21 (1993), p. 195.Google Scholar
44.Wong-Ng, W., Cook, L. P., and Jiang, F., J. Am. Ceram. Soc. 81 (7), 1829 (1998).CrossRefGoogle Scholar
45.Endo, U., Koyama, S., and Kawai, T., Jpn. J. Appl. Phys. 27, L1476 (1988).CrossRefGoogle Scholar
46.Wu, W. and Nicholson, P. S., J. Mater Res. 7, 38 (1992).Google Scholar
47.Zhu, W. and Nicholson, P. S., J. Appl. Phys. (1992).Google Scholar
48.Merchant, N., Luo, J. S., Maroni, V. A., Sinha, S. N., Riley, G. N. Jr, and Carter, W. L., Appl. Supercond. 2 (3/4), 217225 (1994).CrossRefGoogle Scholar
49.Zhu, W. and Nicholson, P. S., J. Appl. Phys. 73 (12), 84238428 (1993).Google Scholar
50.Balachandran, U., Iyer, A. N., Haldar, P., Hoehn, J. G. Jr, and Motowidlo, L. R., Proceedings of The Fourth International Conference and Exhibition: World Congress on Superconductivity, Vol. II, edited by Kristen, K. and Burnham, C., Orlando, FL, June 27– July 1, 1994, pp. 639649.Google Scholar
51.Wong-Ng, W. and Cook, L.P., J. Am. Ceram. Soc. 77 (7), 1883– 1888 (1994).Google Scholar
52.Heinrich, K.F. J., Electron Beam X-ray Microanalysis (Van Nostrand Reinhold Co., New York, 1981), 578 p.Google Scholar
53.Fiori, C.E., Swyt, C. R., and Myklebust, R. L., NIST/NIH Desktop Spectrum Analyzer Program and X-ray Database, NIST Standard Reference Database No. 36 (1991).Google Scholar
54.Cook, L.P. and Wong-Ng, W., Impact of Recent Advances in Synthesis and Processing of Ceramic Superconductors, Proceedings of Amer. Ceram. Soc. Annual Meeting, edited by Wong-Ng, W., Balachandran, U., and Bhalla, A. S. (1998), p. 41.Google Scholar
55.Wong-Ng, W., Cook, L.P., Jiang, F., Greenwood, W., Balachandran, U., and Lanagan, M., J. Mater. Res. 12, 2855 (1997).CrossRefGoogle Scholar
56.Wang, Y-L., Bien, W., Zhu, Y., Cai, Z-X., Welch, D.O., Sabatini, R.L., Suenaga, M., and Thurston, T. R., Appl. Phys. Lett. 69, 580 (1996).CrossRefGoogle Scholar
57.Grivel, J-C. and Flükiger, R., J. Alloy Comp. (1999, in press).Google Scholar