Skip to main content Accessibility help

Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbχ high-entropy alloys

  • Mengdi Zhang (a1), Lijun Zhang (a1), Peter K. Liaw (a2), Gong Li (a3) and Riping Liu (a1)...


A hypoeutectic CoCrFeNiNbχ system was synthesized to investigate the effect of Nb content on the thermal stability, mechanical properties, and corrosion behaviors. The hypoeutectic CoCrFeNiNbχ alloy, which contained the Laves phase, possessed two-phase eutectic structures. The elevated temperature may have an impact on the stability of the Laves phase. Nanoindentation measurements showed that the Laves phase is much harder than the FCC phase, which could be confirmed by the shallower maximum penetration depth in the typical Ph curve. Furthermore, the plasticity of the Laves phase was characterized by nanoindentation measurements. Compared with the FCC phase, the activation energy of dislocation nucleation in the Laves phase is much higher due to the large atomic size difference and the phase difference. Corrosion and passivation behaviors of CoCrFeNiNbχ were investigated in 3.5% NaCl solution. All the alloys exhibited spontaneous passivity and low current densities in 3.5% NaCl solution. Furthermore, the corrosion potential increased with the increasing Nb content, which indicated that the corrosion resistance enhanced with a higher Nb content.


Corresponding author

a)Address all correspondence to this author. e-mail:,


Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Sun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 5, 299 (2004).
2.Zhang, W.R., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).
3.Liu, W.H., He, J.Y., Huang, H.L., Wang, H., Lu, Z.P., and Liu, C.T.: Effect of Nb addition on microstructure and mechanical properties of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).
4.Kao, Y.F., Chen, T.J., Chen, S.K., Yeh, J.W., and Tsai, C.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlχCoCrFeNi (0 ≤ χ ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).
5.Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).
6.Tang, Z., Yuan, T., Tsai, C.W., Jeh, J.W., Lundin, C.D., and Liaw, P.K.: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).
7.Hsu, C.Y., Juan, C.C., Chen, S.T., Sheu, T.S., Yeh, J.W., and Chen, S.K.: Phase diagrams of high-entropy alloy system Al–Co–Cr–Fe–Mo–Ni. J. Miner. Met. Mater. Soc. 65, 1829 (2013).
8.Hsu, C.Y., Yeh, J.W., Chen, S.K., and Shun, T.T.: Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).
9.Zhu, J.M., Zhang, H.F., Fu, H.M., Wang, A.M., Li, H., and Hu, Z.Q.: Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMoχ alloys. J. Alloys Compd. 497, 52 (2010).
10.Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
11.Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configuration in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).
12.Tong, C-J., Chen, M-R., Yeh, J-W., Lin, S-J., Chen, S-K., Shun, T-T., and Chang, S-Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).
13.Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., Wen, B., Wang, Z.J., Jie, J.C., Cao, Z.Q., Ruan, H.H., and Li, T.J.: A promising new class of high temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).
14.Jiang, H., Jiang, L., Qiao, D.X., Lu, Y.P., Wang, T.M., Cao, Z.Q., and Li, T.J.: Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33, 712 (2017).
15.Lu, Y.P., Gao, X.Z., Jiang, L., Chen, Z.N., Wang, T.M., Jie, J.C., Kang, H.J., Zhang, Y.B., Guo, S., Ruan, H.H., Zhao, Y.H., Cao, Z.Q., and Li, T.J.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).
16.Gao, X.Z., Lu, Y.P., Zhang, B., Liang, N.N., Wu, G.Z., Sha, G., Liu, J.Z., and Zha, Y.H.: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59 (2017).
17.Lu, Y.P., Jiang, H., Guo, S., Wang, T.M., Cao, Z.Q., and Li, T.J.: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).
18.Rogal, Ł., Morgiel, J., Świątek, Z., and Czerwiński, F.: Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater. Sci. Eng., A 651, 590 (2016).
19.He, F., Wang, Z.J., Shang, X.L., Leng, C., Li, J.J., and Wang, J.C.: Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).
20.He, F., Wang, Z., Cheng, P., Wang, Q., Li, J.J., Dang, Y.Y., Wang, J.C., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).
21.Ma, S.G. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).
22.El-Daly, A.A., Desoky, W.M., Saad, A.F., Mansor, N.A., Lotfy, E.H., Abd-Elmoniem, H.M., and Hashem, H.: The effect of undercooling on the microstructure and tensile properties of hypoeutectic Sn–6.5Zn–xCu Pb-free solders. Mater. Des. 80, 152 (2015).
23.Wang, X., Nie, M.Y., Wang, C.T., Wang, S.C., and Gao, N.: Microhardness and corrosion properties of hypoeutectic Al–7Si alloy processed by high-pressure torsion. Mater. Des. 83, 193 (2015).
24.Ares, A.E., Gassa, L.M., Schvezov, C.E., and Rosenberger, M.R.: Corrosion and wear resistance of hypoeutectic Zn–Al alloys as a functionof structural features. Mater. Chem. Phys. 136, 394 (2012).
25.Osório, W.R., Peixoto, L.C., Canté, M.V., and Garcia, A.: Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al–Ni alloy. Mater. Des. 31, 4485 (2010).
26.Xu, Y.X., Lu, J.T., Yang, X.W., Yan, J.B., and Li, W.Y.: Effect and role of alloyed Nb on the air oxidation behavior of Ni–Cr–Fe alloys at 1000 °C. Corros. Sci. 127, 10 (2017).
27.Li, K., Li, Y., Huang, X., Gibson, D., Zheng, Y., Liu, J., Sun, L., and Fu, Y.Q.: Surface microstructures and corrosion resistance of Ni–Ti–Nb shape memory thin films. Appl. Surf. Sci. 414, 63 (2017).
28.Lethabane, M.L., Olubambi, P.A., and Chikwanda, H.K.: Corrosion behavior of sintered Ti–Ni–Cu–Nb in 0.9% NaCl environment. J. Mater. Res. Technol. 4, 367 (2015).
29.Zhang, L.J., Yu, P.F., Zhang, M.D., Liu, D.J., Ma, M.Z., Liaw, P.K., Li, G., and Liu, R.P.: Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys. Mater. Sci. Eng., A 707, 708 (2017).
30.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
31.Qvarfort, R.: Critical pitting temperature measurements of stainless steels with an improved electrochemical method. Corros. Sci. 29, 987 (1989).
32.Bommersbach, P., Alemany-Dumont, C., Millet, J.P., and Normand, B.: Formation and behavior study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta 51, 1076 (2005).
33.Muñoz, A.I., Antón, J.G., Guiñón, J.L., and Herranz, V.P.: Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques. Corros. Sci. 49, 3200 (2007).
34.Ebenso, E.E.: Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine. Mater. Chem. Phys. 79, 58 (2003).
35.Shi, Y.Z., Yang, B., Xie, X., Brechtl, J., Dahmen, K.A., and Liaw, P.K.: Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119, 33 (2017).
36.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Mater. Chem. Phys. 132, 233 (2012).
37.Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
38.Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2006).
39.Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).
40.Troparevsky, M.C., Morris, J.R., Daene, M., Wang, Y., Lupini, A.R., and Stocks, G.M.: Beyond atomic sizes and Hume-Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 2350 (2015).
41.Dong, Y., Lu, Y.P., Jiang, L., Wang, T.M., and Li, T.J.: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105 (2014).
42.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
43.Tsai, M-H., Tsai, K-Y., Tsai, C-W., Lee, C., Juan, C-C., and Yeh, J-W.: Criterion for sigma phase formation in Cr- and V containing high-entropy alloys. Mater. Res. Lett. 1, 207 (2013).
44.Catoor, D., Gao, Y.F., Geng, J., Prasad, M.J.N.V., Herbert, E.G., Kumar, K.S., Pharr, G.M., and George, E.P.: Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater. 61, 2953 (2013).
45.Wang, L., Bei, H., Li, T.L., Gao, Y.F., George, E.P., and Nieh, T.G.: Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals. Scr. Mater. 65, 179 (2011).
46.Ye, Y.X., Lu, Z.P., and Nieh, T.G.: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).
47.Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).
48.Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).
49.Shun, T.T., Chang, L.Y., and Shiu, M.H.: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng., A 556, 170 (2012).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed