Skip to main content Accessibility help

Effect of growth gas flow rate on the SiC crystal resistivity

  • Shenghuang Lin (a1) and Zhiming Chen (a1)


A technique of controlling growth gas flow rate for adjusting crystal resistivity is presented in this paper. The experimental results showed that high growth gas flow rate could affect SiC crystal resistivity remarkably. The SiC crystal resistivity would get higher and higher with increasing growth gas flow rate. The purifying effect of gas flow rate was contributing to resistivity increase at a relatively low flow rate range. As for the high gas flow rate, increase of resistivity might be explained by the well-known site competition effect. Then, one explanation for reducing nitrogen content in the crystal via increasing gas flow rate was put forward. Namely, the Si component in the gas species may more easily go through the graphite crucible at the initial stage to make the growth ambient C-rich when the gas flow rate is ∼800 sccm or more and hence suppress nitrogen incorporation into carbon site to increase crystal resistivity. This result is very helpful to grow high purity high resistivity SiC ingots.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Devaty, R.P. and Choyke, W.J.: Optical characterization of silicon carbide polytypes. Phys. Status Solidi A 162, 5 (1997).
2.Weitzel, C.E.: Silicon carbide high frequency devices. Mater. Sci. Forum 264268, 907 (1998).
3.Linnarsson, M.K., Janson, M.S., Nordell, N., Wong-Leung, J., and Schöner, A.: Formation of precipitates in heavily boron doped 4H-SiC. Appl. Surf. Sci. 252, 53165320 (2006).
4.Tupitsyn, E.Y., Arulchakkaravarthi, A., Drachev, R.V., and Sudarshan, T.S.: Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth. J. Cryst. Growth 299, 7076 (2007).
5.Schmitt, E., Straubinger, T., Rasp, M., Vogel, M., and Wohlfart, A.: Polytype stability and defects in differently doped bulk SiC. J. Cryst. Growth 310, 966970 (2008).
6.Wutimakun, P., Buteprongjit, C., and Morimoto, J.: Nondestructive three-dimensional observation of defects in semi-insulating 6H-SiC single-crystal wafers using a scanning laser microscope (SLM) and infrared light-scattering tomography (IR-LST).J. Cryst. Growth 311, 37813786 (2009).
7.Lin, S.H., Chen, Z.M., Liang, P., Ba, Y.T., and Liu, S.J.: Formation and suppression of misoriented grains in 6H-SiC crystals. CrystEngComm 13, 2709 (2011).
8.Lin, S.H., Chen, Z.M., Yang, Y., Liu, S.J., Ba, Y.T., and Yang, C.: Formation and evolution of micropipes in SiC crystals. CrystEngComm 14, 1588 (2012).
9.Pearton, S.J., Park, Y.D., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Kim, J., Ren, F., Zavada, J.M., and Wilson, R.G.: Ferromagnetism in GaN and SiC doped with transition metals. Thin Solid Films 447448, 493501 (2004).
10.Huang, Z. and Chen, Q.W.: Magnetic properties of Cr-doped 6H-SiC single crystals. J. Magn. Magn. Mater. 313, 111114 (2007).
11.Lin, S.H., Chen, Z.M., Liang, P., Jiang, D., and Xie, H.J.: Room-temperature ferromagnetism of vanadium-doped 6H-SiC. Chem. Phys. Lett. 496, 56 (2010).
12.Tairov, Y.M. and Tsvekov, V.F.: Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth 43, 209 (1978).
13.Fanton, M.A., Li, Q., Polyakov, A.Y., Skowronski, M., Cavalero, R., and Ray, R.: Effects of hydrogen on the properties of SiC crystals grown by physical vapor transport: Thermodynamic considerations and experimental results. J. Cryst. Growth 287, 339343 (2006).
14.Yang, Y., Lin, T., and Chen, Z.M.: Effect of growth gas flow rate on the defects density of SiC single crystal. J. Semicond. 29, 851854 (2008).
15.Larkin, D.J., Neudeck, P.G., Powell, J.A., and Matus, L.G.: Site-competition epitaxy for superior silicon carbide electronics. Appl. Phys. Lett. 65, 1659 (1994).
16.Miyata, M., Higashiguchi, Y., and Hayafuji, Y.: Ab initio study of substitutional impurity atoms in 4H-SiC. J. Appl. Phys. 104, 123702 (2008).
17.Li, Q., Polyakov, A.Y., Skowronski, M., Sanchez, E.K., Loboda, M.J., Fanton, M.A., Bogart, T., and Gamble, R.D.: Nonuniformities of electrical resistivity in undoped 6H-SiC wafers. J. Appl. Phys. 97, 113705 (2005).


Effect of growth gas flow rate on the SiC crystal resistivity

  • Shenghuang Lin (a1) and Zhiming Chen (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed