Skip to main content Accessibility help

Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates

  • Byoung-Joon Kim (a1), Hae-A-Seul Shin (a2), Ji-Hoon Lee (a2), Tae-Youl Yang (a2), Thomas Haas (a3), Patric Gruber (a3), In-Suk Choi (a4), Oliver Kraft (a5) and Young-Chang Joo (a6)...


The thickness dependence of the electrical stability under monotonic and cyclic tensile loading is investigated for Cu films on polymer substrates. As for monotonic tensile deformation, thicker films show better stability than thinner films due to their higher ductility and the larger capability of strain accommodation. For the fatigue resistance, however, a more complex behavior was observed depending on the amount of the applied strain. For low strain amplitude in the high cycle fatigue (HCF) regime, thinner films exhibit longer fatigue life because the larger strength of thinner films suppresses dislocation movement and damage nucleation. However, for high strain amplitudes in the low cycle fatigue (LCF) regime, the fatigue life for thinner films is drastically reduced compared to thicker films. It is shown that fatigue coefficients in the LCF regime can be obtained when applying the Coffin–Manson relationship.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All
1. Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).
2. Nam, K.T., Kim, D-W., Yoo, P.J., Chiang, C-Y., Meethong, N., Hammond, P.T., Chiang, Y-M., and Belcher, A.M.: Virus enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885 (2006).
3. Li, Y., Lee, D.K., Kim, J.Y., Kim, B., Park, N.G., Kim, K., Shin, J.H., Choi, I.S., and Ko, M.J.: Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy Environ. Sci. 5, 8950 (2012).
4. Coakley, K.M. and McGehee, M.D.: Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533 (2004).
5. Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004).
6. Zhu, X.F., Zhang, B., Gao, J., and Zhang, G.P.: Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scr. Mater. 60, 178 (2009).
7. Lee, J-H., Kim, N-R., Kim, B-J., and Joo, Y-C.: Improved mechanical performance of solution-processed MWCNT/Ag nanoparticle composite films with oxygen-pressure-controlled annealing. Carbon 50, 98 (2012).
8. Lu, N., Wang, X., Suo, Z., and Vlassak, J.J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).
9. Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., and Lewis, J.A.: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590 (2009).
10. Carta, R., Jourand, P., Hermans, B., Thoné, J., Brosteaux, D., Vervust, T., Bossuyt, F., Axisa, F., Vanfleteren, J., and Puers, R.: Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sens. Actuators, A 156, 79 (2009).
11. Kim, D.H., Song, J., Won, M.C., Kim, H.S., Kim, R.H., Liu, Z., Huang, Y.Y., Hwang, K.C., Zhang, Y.W., and Rogers, J.A.: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105, 18675 (2008).
12. Schwaiger, R., Dehm, G., and Kraft, O.: Cyclic deformation of polycrystalline Cu films. Philos. Mag. 83, 693 (2003).
13. Sun, X.J., Wang, C.C., Zhang, J., Liu, G., Zhang, G.J., and Ding, X.D.: Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D: Appl. Phys. 41, 195404 (2008).
14. Sim, G-D., Hwangbo, Y., Kim, H-H., Lee, S-B., and Vlassak, J.J.: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66, 915 (2012).
15. Gruber, P.A., Böhm, J., Onuseit, F., Wanner, A., Spolenak, R., and Arzt, E.: Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater. 56, 2318 (2008).
16. Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20A, 2217 (1989).
17. Kraft, O., Gruber, P.A., Mönig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).
18. Niu, R.M., Liu, G., Wang, C., Ding, X.D., and Sun, J.: Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 90, 161907 (2007).
19. Lu, N., Suo, Z., and Vlassak, J.J.: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679 (2010).
20. Wang, D., Volkert, C.A., and Kraft, O.: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).
21. Schwaiger, R. and Kraft, O.: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51, 195 (2003).
22. Sim, G-D., Lee, Y-S., Lee, S-B., and Vlassak, J.J.: Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng., A 575, 86 (2013).
23. Coffin, L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931 (1954).
24. Manson, S.S.: Behaviour of materials under conditions of thermal stress. In National Advisory Commission on Aeronautics Report 1170 (Lewis Flight Propulsion Laboratory, Cleveland, 1954).
25. Kim, B-J., Cho, Y., Jung, M-S., Shin, H-A-S., Moon, M-W., Han, H.N., Nam, K.T., Joo, Y-C., and Choi, I-S.: Fatigue-free, electrically reliable copper electrode with nanohole array. Small 8, 3300 (2012).
26. Kim, B-J., Shin, H-A-S., Jung, S-Y., Cho, Y., Kraft, O., Choi, I-S., and Joo, Y-C.: Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Mater. 61, 3473 (2013).
27. Yu, D.Y.W. and Spaepen, F.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 94, 2991 (2004).
28. Gruber, P.A., Arzt, E., and Spolenak, R.: Brittle-to-ductile transition in ultra thin Ta/Cu film systems. J. Mater. Res. 24, 1906 (2009).
29. Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Book Company, London, UK, 1988).
30. Suresh, S.: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, UK, 1999).
31. Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).
32. Dauskardt, R., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998).
33. Cooper, C.V. and Fine, M.E.: Coffin-Manson relation for fatigue crack initiation. Scr. Metall. 18, 593 (1984).
34. Sangid, M.D.: The physics of fatigue crack initiation. Int. J. Fatigue 57, 58 (2013).
35. Laird, C. and Krause, A.R.: A theory of crack nucleation in high strain fatigue. Int. J. Fract. Mech. 4, 219 (1968).
36. McDowell, D.L.: Applications of Continuum Damage Mechanics to Fatigue and Fracture (Amer Society for Technology, USA, 1997).
37. Kraft, O., Schwaiger, R., and Wellner, P.: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng., A 319, 919 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed