Skip to main content Accessibility help

Effect of excimer laser annealing on the structural properties of silicon germanium films

  • Sherif Sedky (a1), Jeremy Schroeder (a2), Timothy Sands (a2), Tsu-Jae King (a3) and Roger T. Howe (a4)...


We investigated the use of a pulsed excimer laser having a wavelength of 248 nm, a pulse duration of 38 ns, and an average fluence between 120 and 780 mJ/cm2 to locally tailor the physical properties of Si1−xGex (18% < x < 90%) films deposited by low-pressure chemical vapor deposition at temperatures between 400 and 450 °C. Amorphous as-deposited films showed, after laser annealing, strong {111} texture, a columnar grain microstructure, and an average resistivity of 0.7 mΩ cm. Atomic force microscopy indicated that the first few laser pulses resulted in a noticeable reduction in surface roughness, proportional to the pulse energy. However, a large number of successive pulses dramatically increased the surface roughness. The maximum thermal penetration depth of the laser pulse is demonstrated to depend on the fluence and the film structure being either polycrystalline or amorphous. Finally, a comparison between excimer laser annealing and metal-induced crystallization and rapid thermal annealing is presented.


Corresponding author

a) Address all correspondence to this author.e-mail:


Hide All
1Franke, A., Heck, J., King, T.J. and Howe, R.T.Polycrystalline silicon germanium films for integrated microsystems. J. Microelectromech. Syst. 12, 160 (2003)
2Robertson, A.E., Hultman, L.G., Hentzell, H.T.G., Hornstrom, S.E. and Shaofang, G.: Metal induced crystallization of amorphous silicon. J. Vac. Sci. Technol. A 5, 1447 (1987).
3Yoon, S.Y., Kim, K.H. and Kim, C.O.: Low temperature metal induced crystallization of amorphous silicon using a Ni solution. J. Appl. Phys. 82, 5865 (1997).
4Wong, M., Jin, Z., Bhat, G., Wong, P. and Kwok, H.: Characterization of the MIC/MILC interface and its effect on the performance of MILC thin-film transistors. IEEE Trans. Electron Devices 47, 1061 (2000).
5Bhattacharyya, A., Streetman, B. and Hess, K.: Theoritical and experimental investigation of the dynamics of pulsed laser annealing of amorphous silicon. J. Appl. Phys. 52, 3611 (1981).
6Kohno, A., Sameshima, T., Sano, N., Sekiya, M. and Hara, M.: High performance poly-Si TFTs fabricated using pulsed laser annealing and remote plasma CVD with low temperature processing. IEEE Trans. Electron Devices. 42, 251 (1995).
7Andra, G., Bergmann, J., Falk, F. and Ose, E.: In situ diagnostics for preparation of laser crystallized silicon films on glass for solar cells. Thin Solid Films 337, 98 (1999).
8Yoon, S.Y., Young, N., Van der Zaag, P. and McCulloch, D.: High performance poly-Si TFTs made by Ni-mediated crystallization through low-shot laser annealing. IEEE Electron Device Lett. 24, 22 (2003).
9Murley, D., Young, N., Trainor, M. and McCulloch, D.: An investigation of laser annealed and metal induced crystallized polycrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 48, 1145 (2001).
10Sedky, S., Witvrouw, A., Caymax, M., Saerens, A. and Van Houtte, P.: Characterization of RPCVD polycrystalline silicon germanium deposited at temperatures ⩽ 550 °C. J. Mater. Res. 17, 1580 (2002).
11Sedky, S., Witvrouw, A., Saerens, A., Van Houtte, P., Poortmans, J. and Baert, K.: Effect of in-situ boron doping on properties of silicon germanium films deposited by CVD at 400 °C. J. Mater. Res. 16, 2607 (2001).
12Watanabe, H., Miki, H., Sugai, S., Kawasaki, K. and Kioka, T.: Crystallization process of polycrystalline silicon by KrF excimer laser annealing. Jpn. J. Appl. Phys. 33, 4491 (1994).
13Fogarassy, E., Stuck, R., Toulemonde, M., Bruyers, J. and Siffert, P.: Pulsed laser annealing of rf sputtered amorphous Si-H films doped with arsenic. J. Appl. Phys. 53, 3261 (1982).
14Donnelly, D., Covington, B., Grun, J., Fischer, R., Peckerar, M., Felix, C., Djordjevic, B., Mignogna, R., Meyer, J., Ting, A. and Manka, C.Athermal annealing of ion-implanted silicon, in 9th Int. Conf. on Advanced Thermal Processing of Semiconductors—RTR 2001, pp. 133144
15Prussin, S. and Van der Ohe, W.: Laser annealing of low-fluence ion-implanted silicon. J. Appl. Phys. 51, 3853 (1980).
16Kim, D. and Kwong, D.: Pulsed laser annealing of single-crystal and ion-implanted semiconductors, IEEE J. Quantum Electron. 18, 224 (1982).
17Chiussi, S., Gonzalez, P., Leon, B., Larciprete, R., Willmott, P., Martelli, S., Cesile, C. and Borsella, E.: Laser-induced integrated processing for heteroepitaxial SixGe(1-x) alloys. Appl. Surf. Sci. 102, 42 (1996).
18Chiussi, S., Serra, C., Serra, J., González, P., León, B., Urban, S., Andrä, G., Bergmann, J., Falk, F., Fabbri, F., Fornarini, L., Martelli, S. and Rinaldi, F.: Laser crystallization of poly-SiGe for microbolometers. Appl. Surf. Sci. 186, 166 (2002).
19Chang, T.K., Chu, F.T., Lin, C.W., Tseng, C.H. and Cheng, H.C.: A novel germanium doping method for fabrication of high-performance p-channel poly-Si1-xGex TFT by excimer laser crystallization. IEEE Electron. Device Lett. 24, 233 (2003).
20Yu, G., Krishna, K.M., Shao, C., Umeno, M., Soga, T., Watanabe, J. and Jimbo, T.: Characterization of excimer laser annealed polycrystalline Si1-xGex alloy thin films by x-ray diffraction and spectroscopic ellipsometry. J. Appl. Phys. 83, 174 (1998).
21Sedky, S., Howe, R. and King, T.J.: Pulsed laser annealing, a low thermal budget technique for eliminating stress gradient in poly-SiGe MEMS structures. J. Microelectromech. Syst. 13, 4 (2004).
22Anderson, G.B., Boyce, J.B., Fork, D.K., Mei, P., Ready, S., and Chen, S.: Critical laser fluence observed in (111) texture, grain size and mobility of laser crystallized amorphous silicon, in Amorphous Silicon Technology, 1993, edited by Schiff, E.A., Thompson, M.J., Madan, A., Tanaka, K., and LeComber, P.G. (Mater. Res. Soc. Symp. Proc. 297 Pittsburgh, PA, 1993), pp. 533538.
23Toet, D., Smith, P. and Sigmon, T.: Laser crystallization and structural characterization of hydrogenated amorphous silicon thin films. J. Appl. Phys. 85, 7914 (1999).
24Thompson, M., Galvin, G. and Mayer, J.Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 2360 (1984)
25Robertson, A., Hultman, L., Hentzell, H., Hornstorn, S. and Shaofang, G.: Metal induced crystallization of amorphous silicon. J. Vac. Sci. Technol. A 5, 1447 (1987).
26Yoon, S. and Young, J.: Low temperature solid phase crystallization of amorphous silicon at 380 °C. J. Appl. Phys. 84, 6463 (1998).


Effect of excimer laser annealing on the structural properties of silicon germanium films

  • Sherif Sedky (a1), Jeremy Schroeder (a2), Timothy Sands (a2), Tsu-Jae King (a3) and Roger T. Howe (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed