Skip to main content Accessibility help
×
Home

Effect of doping level during rapid thermal processing of multilayer structures

  • A. R. Abramson (a1), P. Nieva (a2), H. Tada (a1), P. Zavracky (a2), I. N. Miaoulis (a1) and P. Y. Wong (a1)...

Abstract

A numerical model has been developed to examine the temperature history of a multilayer wafer undergoing rapid thermal processing (RTP) for various doping densities. Partial transparency and thin film interference effects are considered. Doping levels from ∼1015 to ∼1018 cm−3 are examined. Numerical temperature predictions of the lightly doped wafer are compared with experimental measurements. Heating rates for the lightly doped wafer fluctuate due to partial transparency effects and reach a maximum of ∼50 °C/s. The heavily doped wafer sees a maximum heating rate of ∼100 °C/s. Because the wafers are opaque above 700 °C regardless of their level of doping, all wafers reach steady state at ∼845 °C.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: pwong@tufts.edu

References

Hide All
1.Lord, H. A., IEEE Trans. Semicond. Manuf. 1, 105 (1988).
2.Campbell, S. A. and Knutson, K. L., IEEE Trans. on Semiconductor Manufacturing 5, 302 (1992).
3.Wong, P. Y. and Miaoulis, I. N., in Rapid Thermal and Integrated Processing II, edited by Gelpey, J. C., Elliott, J. K., Wortman, J. J., and Ajmera, A. (Mater. Res. Soc. Symp. Proc. 303, Pittsburgh, PA, 1993).
4.Timans, P. J., in Rapid Thermal and Integrated Processing V, edited by Gelpey, J. C., Öztürk, M. C., Thakur, R. P. S., Flory, A. T., and Roozelboom, F. (Mater. Res. Soc. Symp. Proc. 429, Pittsburgh, PA, 1996), p. 3.
5.Sturm, J. C. and Reaves, C. M., IEEE Trans. Electron Devices 39, 81 (1992).
6.Sato, T., Jpn. J. Appl. Phys. 6, 339 (1967).
7.Wong, P.Y., Hess, C. K., and Miaoulis, I. N., Int. J. Heat Mass Trans. 35, 3313 (1992).
8.Heilman, B.D. and Miaoulis, I.N., ASME-HTD 268, 79 (1993).
9.Patankar, S.V., Numerical Heat Transfer and Fluid Flow (Hemisphere Publishing Corporation, New York, 1980).
10.Meyer, J. R., Kruer, M.R., and Bartoli, F. J., J. Appl. Phys. 51, 5513 (1980).
11.DeWitt, D.P. and Nutter, G. D., Theory and Practice of Radiation Thermometry (John Wiley and Sons, Inc., New York, 1988).
12.Abramson, A.R. and Wong, P.Y., unpublished.
13.Siegel, R. and Howell, J., Thermal Radiation Heat Transfer, 2nd ed. (Hemisphere Publishing Corporation, New York, 1981), pp. 233274.
14.Sheets, R.E., Nucl. Instrum. Meth. Phys. Res. B 6, 219 (1985).
15.Gouffe, A., Revue d'Optique. 24, 1 (1945).
16.Jellison, G.E. Jr, and Lowndes, D.H., Appl. Phys. Lett. 41, 594 (1982).
17.Zappe, H.P., Introduction to Semiconductor Integrated Optics (Artech House, Boston, Norwood, MA, 1995).
18.Collins, R.J. and Fan, H. Y., Phys. Rev. 93, 674 (1954).
19.Jellison, G.E. Jr and Modine, F. A., J. Appl. Phys. 76, 3758 (1994).
20.Ohring, M., The Materials Science of Thin Films (Academic Press, San Diego, CA, 1992), p. 519.
21.Wong, P.Y., Processing Uniformity in Thin-Film Manufacturing by Thermal Radiative Heating (Doctoral Dissertation, Tufts University, 1995), pp. 142146.
22.Heavens, O.S., Optical Properties of Thin Solid Films (Butterworth, Washington, DC, 1955), pp. 4695.
23.Abramson, A.R., Tada, H., and Wong, P. Y., unpublished.

Effect of doping level during rapid thermal processing of multilayer structures

  • A. R. Abramson (a1), P. Nieva (a2), H. Tada (a1), P. Zavracky (a2), I. N. Miaoulis (a1) and P. Y. Wong (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed