Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-24T14:12:38.286Z Has data issue: false hasContentIssue false

Effect of dopant (Nb) concentration on the grain boundary electrical properties of Nb-doped barium titanate

Published online by Cambridge University Press:  31 January 2011

Seok-Hyun Yoon*
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul 151–742, Korea
Hwan Kim
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul 151–742, Korea
*
a) Address all correspondence to this author. e-mail: maniacaa@gong.snu.ac.kr
Get access

Abstract

A series of coarse-grained BaTiO3 specimens with different dopant (Nb) concentrations were prepared by adjusting the oxygen partial pressure during sintering. They were again heat-treated in air, and the behavior of the grain boundary electrical properties with the increase of Nb concentration was investigated under the conditions of the same microstructure and heat treatment. The interface states of the grain boundaries were estimated using the grain boundary R (resistance) and C (capacitance) values at each temperature that were obtained from impedance analysis. An increase in the interface state density at certain energy levels with increasing Nb concentration was verified experimentally. One type of interface state was observed for specimens with low Nb concentrations and another for specimens with high Nb concentrations. It is proposed that the changes in the interface state with increasing Nb concentration are related to the transition of the compensating defect mode and differences in the extent of oxygen adsorption at the grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. H.M. Al-Allak, Illingsworth, J., Brinkman, A.W., Russel, G.J., and Woods, J., J. Appl. Phys. 64, 6477 (1988).Google Scholar
2.Blanchart, P., Baumard, J.F., and Abelard, P., J. Am. Ceram. Soc. 75, 1068 (1992).CrossRefGoogle Scholar
3.Wernicke, R., Phys. Status Solidi 47, 139 (1978).CrossRefGoogle Scholar
4.Drofenik, M., J. Am. Ceram. Soc. 70, 311 (1987).CrossRefGoogle Scholar
5.Yoon, S.H., Lee, K.H., and Kim, H., J. Am. Ceram. Soc. 83, 2463 (2000).CrossRefGoogle Scholar
6.Ihrig, H. and Puschert, W., J. Appl. Phys. 48, 3081 (1977).CrossRefGoogle Scholar
7.Lai, C.H. and Tseng, T.Y., J. Am. Ceram. Soc. 77, 2419 (1994).CrossRefGoogle Scholar
8.Bai, S.N. and Tseng, T.Y., J. Appl. Phys. 74, 695 (1993).CrossRefGoogle Scholar
9.Kobayashi, K., Takata, M., Fujimura, Y., and Okamoto, S., J. Appl. Phys. 60, 4191 (1986).CrossRefGoogle Scholar
10.Lang, D.V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
11.Ohbuchi, Y., Kawahara, T., Okamoto, Y., and Morimoto, J., Jpn. J. Appl. Phys. Pt1., 40, 213 (2001).CrossRefGoogle Scholar
12.Alles, A.B. and Burdick, V.L., J. Am. Ceram. Soc. 76, 401 (1993).CrossRefGoogle Scholar
13.Wang, D.Y. and Umeya, K., J. Am. Ceram. Soc. 73, 669 (1990).CrossRefGoogle Scholar
14.Wang, D.Y. and Umeya, K., J. Am. Ceram. Soc. 74, 280 (1991).CrossRefGoogle Scholar
15.Boukamp, B.A., Solid State Ionics 20, 31 (1986).Google Scholar
16.Saburi, O., J. Phys. Soc. Jpn. 14, 1159 (1959).Google Scholar
17.Heywang, W., J. Am. Ceram. Soc. 47, 484 (1964).Google Scholar
18.Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971), p. 77.Google Scholar
19.Hayashi, K., Yamamoto, T., Ikuhara, Y., and Sakuma, T., J. Appl. Phys. 86, 2909 (1999).CrossRefGoogle Scholar
20.Kahn, M., J. Am. Ceram. Soc. 54, 455 (1971).Google Scholar
21.Daniels, J. and Härdtl, K.H., Philips. Res. Rep. 31, 489 (1976).Google Scholar
22.Ihrig, H., J. Phys. C: Solid State Phys. 9, 3469 (1976).Google Scholar
23.Daniels, J., Härdtl, K.H., Wernicke, R., Philips Tech. Rev. 38, 73 (1978/1979).Google Scholar
24.Daniels, J. and Wernicke, R., Philips Res. Rept. 31, 544 (1976).Google Scholar
25.Chiang, Y.M. and Takagi, T., J. Am. Ceram. Soc. 73, 3286 (1990).CrossRefGoogle Scholar
26.Desu, S.B. and Payne, D.A., J. Am. Ceram. Soc. 73, 3416 (1990).CrossRefGoogle Scholar
27.Jonker, G.H., in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics, edited by Levinson, L.M. (Am. Ceram. Soc., Columbus, OH, 1981), p. 155.Google Scholar
28.Kuwabara, M., Solid State Electron. 27, 929 (1984).CrossRefGoogle Scholar
29.Hayashi, K., Yamamoto, T., Ikuhara, Y., and Sakuma, T., J. Am. Ceram. Soc. 83, 2684 (2000).CrossRefGoogle Scholar
30.Yamada, A. and Chiang, Y.M., J. Am. Ceram. Soc. 78, 909 (1995).CrossRefGoogle Scholar
31.Jonker, G.H. and Havinga, E.E., Mater. Res. Bull. 17, 345 (1982).CrossRefGoogle Scholar
32.Chan, H.M., Harmer, M.P., and Smyth, D.M., J. Am. Ceram. Soc. 69, 507 (1986).Google Scholar
33.Millet, J.M., Roth, R.S., Ettlinger, L.D., and Parker, H.S., J. Solid State Chem. 67, 259 (1987).CrossRefGoogle Scholar
34.Koschek, G. and Kubalek, E., Phys. Status Solidi 79, 131 (1983).Google Scholar
35.Wu, T.B. and Lin, J.N., J. Am. Ceram. Soc. 77, 759 (1994).CrossRefGoogle Scholar
36.Daniels, J. and Härdtl, K.H., Philips. Res. Rep. 31, 489 (1976).Google Scholar
37.Lewis, G.V., Catlow, C.R.A., and Casselton, R.E.W., J. Am. Ceram. Soc. 68, 555 (1985).CrossRefGoogle Scholar
38.Morrison, F.D., Sinclair, D.C., and West, A.R., J. Am. Ceram. Soc. 84, 474 (2001).CrossRefGoogle Scholar