Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:23:01.228Z Has data issue: false hasContentIssue false

Effect of defect structure on gas sensitivity of LaCrO3

Published online by Cambridge University Press:  31 January 2011

Rong-Fong Huang
Affiliation:
Ceramic Technology Research Laboratory, Motorola Inc., Albuquerque, New Mexico 87113
Wei-Yean Howng
Affiliation:
Ceramic Technology Research Laboratory, Motorola Inc., Albuquerque, New Mexico 87113
Get access

Abstract

The isopropyl alcohol gas sensitivity of LaCrO3 at 250 °C is found to depend on the amount of TiO2 content and cation stoichiometric ratio of the sample. The gas sensitivity enhancement is related to the defect structure and electrical conduction behavior of p-type, donor-doped semiconductive oxides. The high resistivity coupled with the increasing point defects by the donor dopants are responsible for the high gas sensitivity of TiO2 doped LaCrO3. It is believed that the positively charged ionic-type defects created by dopants act as trapping sites to adsorb oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (John Wiley / Sons, New York, 1972), p. 160.Google Scholar
2.Nitta, T., Terada, J., and Fukushima, F., IEEE Trans. on Electro. Devices ED-29 (1), 95 (1982).CrossRefGoogle Scholar
3.Tischer, P., Pink, H., and Treitinger, L., Jpn. J. Appl. Phys., Suppl. 191, 513 (1980).CrossRefGoogle Scholar
4.Shimizu, Y., Kusano, S., Kuwayama, H., Tanaka, K., and Egashira, M., J. Am. Ceram. Soc. 73 (4), 818 (1990).CrossRefGoogle Scholar
5.Katsura, M., Shiratori, M., Takahashi, T., Yokomizo, Y., and Ichinose, N., in Proc. Int. Meeting on Chem. Sensors, edited by Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S. (Elsevier, New York, 1983), p. 101.Google Scholar
6.Komori, N., Sakai, S., and Komatsu, K., in Proc. Int. Meeting on Chem. Sensors, edited by Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S. (Elsevier, New York, 1983), p. 57.Google Scholar
7.Nakatani, Y., Sakai, M., and Matsuoka, M., in Proc. Int. Meeting on Chem. Sensors, edited by Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S. (Elsevier, New York, 1983), p. 147.Google Scholar
8.Matsuzawa, T., Sugai, T., and Okuda, A., in Proc. Int. Meeting on Chem. Sensors, edited by Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S. (Elsevier, New York, 1983), p. 108.Google Scholar
9.Micheli, A., Am. Ceram. Soc. Bull. 63 (5), 694 (1984).Google Scholar
10.Huang, R. F. and Howng, W.Y., unpublished.Google Scholar
11.Kroger, F. A. and Vink, H. J., in Solid State Physics, edited by Seitz, F. and Turnbell, D. (Academic Press, New York, 1956), p. 307.Google Scholar
12.Meadowcroft, D. B., in International Conference on Strontium Containing Compounds, edited by Gray, T. (Atlantic Research Institute, Halifax, Canada, 1973), p. 119.Google Scholar
13.Flandermeyer, B. K., Nasrallah, M. M., Agarwal, A. K., and Anderson, H. U., J. Am. Ceram. Soc. 67 (3), 195 (1984).CrossRefGoogle Scholar
14.Huang, R. F. and Anderson, H. U., J. Am. Ceram. Soc. 72 (8), 1382 (1989).CrossRefGoogle Scholar