Skip to main content Accessibility help

Effect of Cu on the corrosion resistance and electrochemical response of a Ni–Co–Cr–Mo alloy in acidic chloride solution

  • Biaobiao Yang (a1), Chenying Shi (a2), Yunping Li (a2), Qian Lei (a3) and Yan Nie (a4)...


The effect of Cu addition varied from 0 to 4 mass% on the corrosion resistance and electrochemical response in Ni–Co–Cr–Mo alloys was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott–Schottky analysis. Results indicate that the Ni–Co–Cr–Mo alloy with 2 mass% Cu exhibited the most superior corrosion resistance, and the presence of Cu greatly influenced the outer porous layer. The Ni–Co–Cr–Mo alloys’ corrosion resistance was not simply increasing with copper addition increasing from 0 to 4 mass%. The X-ray photoelectron spectroscopy etching analysis was also conducted to illustrate the fraction of Cu at various depths in the passive film, and the results reveal that a maximum limit on Cu content (appropriately 3.10 mass%) existed in the outermost surface in the present condition. Among the studied alloys, the Ni–Co–Cr–Mo–2%Cu alloy formed the thickest passive film with the lowest donor density.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Hou, B.R., Li, X.G., Ma, X.M., Du, C.W., Zhang, D.W., Zheng, M., Xu, W.C., Lu, D.Z., and Ma, F.B.: The cost of corrosion in China. NPG Mater. Degrad. 1, 1 (2017).
2.Xu, Q.F., Gao, K.W., Lv, W.T., and Pang, X.L.: Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution. Corros. Sci. 102, 114 (2016).
3.Chen, W., Lei, Q., Jia, Y., Yi, J., and Derby, B.: Effect of addition of Ni and Si on the microstructure and mechanical properties of Cu–Zn alloys. J. Mater. Res. 32, 3137 (2017).
4.Qiang, Y.J., Zhang, S.T., Guo, L., Zheng, X.W., Xiang, B., and Chen, S.J.: Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros. Sci. 119, 68 (2017).
5.Xie, L., Lei, Q., Wang, M., Sheng, X., and Li, Z.: Effects of aging mechanisms on the exfoliation corrosion behavior of a spray deposited Al–Zn–Mg–Cu–Zr aluminum alloy. J. Mater. Res. 32, 1105 (2017).
6.Chen, X.H., Li, J., Cheng, X., Wang, H.M., and Huang, Z.: Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316 L using arc additive manufacturing. Mater. Sci. Eng., A 715, 307 (2018).
7.Beom, W.J., Kalubarme, R.S., Yun, K.S., and Park, C.J.: Effects of platinum nano electrodeposits on corrosion of carbon substrate. Appl. Surf. Sci. 257, 9694 (2011).
8.Hong, J.H., Lee, S.H., Kim, J.G., and Yoon, J.B.: Corrosion behaviour of copper containing low alloy steels in sulphuric acid. Corros. Sci. 54, 174 (2012).
9.Hao, X.H., Dong, J.H., Wei, J., Etim, I.N., and Ke, W.: Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank. Corros. Sci. 121, 84 (2017).
10.Zhang, C., Li, Y.P., Hou, Y.H., Tang, N., Ohmura, K., Koizumi, Y., and Chiba, A.: Corrosion resistance of Cu- and Fe-modified Ni–30Co–16Cr–15Mo alloy in aqueous hydrofluoric acid. Corros. Sci. 89, 81 (2014).
11.Li, Y.P., Xu, X.D., Hou, Y.H., Zhang, C., Wang, F.L., Omura, K., Koizumi, Y., and Chiba, A.: Regulating the passive film of NiCoCrMo alloy in hydrofluoric acid by small addition of Cu. Corros. Sci. 98, 119 (2015).
12.Liu, Y., Li, Z., Jiang, Y., Zhang, Y., Zhou, Z., and Lei, Q.: The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal-mechanical treatment. J. Mater. Res. 17, 1342 (2017).
13.Li, P., Zhao, Y., Liu, Y.Z., Zhao, Y., Xu, D.K., Yang, C.G., Zhang, T., Gu, T.Y., and Yang, K.: Effect of Cu addition to 2205 duplex stainless steel on the resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm. J. Mater. Sci. Technol. 33, 723 (2017).
14.Pardo, A., Merino, M.C., Carboneras, M., Coy, A.E., and Arrabal, R.: Pitting corrosion behaviour of austenitic stainless steels with Cu and Sn additions solution by small addition of Cu. Corros. Sci. 49, 510 (2007).
15.Jiang, J., Xu, D.K., Xi, T., Shahzad, M.B., Khan, M.S., Zhao, J.L., Fan, X.M., Yang, C.G., Gu, T.Y., and Yang, K.: Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. Corros. Sci. 113, 46 (2016).
16.Zhang, X.G., Zagidulin, D., and Shoesmith, D.W.: Characterization of film properties on the Ni–Cr–Mo alloy C-2000. Electrochim. Acta 89, 814 (2013).
17.Ujiro, T., Satoh, S., Staehle, R.W., and Smyrl, W.H.: Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corros. Sci. 43, 2185 (2001).
18.Oguzie, E.E., Li, J.B., Liu, Y.Q., Chen, D.M., Li, Y., Yang, K., and Wang, F.H.: The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim. Acta 55, 5028 (2010).
19.Ningshen, S., Mudali, U.K., Mittal, V.K., and Khatak, H.S.: Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels. Corros. Sci. 49, 481 (2007).
20.Zagidulin, D., Zhang, X.R., Zhou, J.G., Noël, J.J., and Shoesmith, D.W.: Characterization of surface composition on alloy 22 in neutral chloride solutions. Surf. Interface Anal. 45, 1014 (2013).
21.Li, Y.P., Fan, X.R., Tang, N., Bian, H.K., Hou, Y.H., Koizumi, Y., and Chiba, A.: Effects of partially substituting cobalt for nickel on the corrosion resistance of a Ni–16Cr–15Mo alloy to aqueous hydrofluoric acid. Corros. Sci. 78, 101 (2014).
22.Ries, L.A.S., Belo, M.D.C., Ferreira, M.G.S., and Muller, I.L.: Chemical composition and electronic structure of passive films formed on alloy 600 in acidic solution. Corros. Sci. 50, 676 (2008).
23.Ter-Ovanessian, B., Alemany-Dumont, C., and Normand, B.: Electronic and transport properties of passive films grown on different Ni–Cr binary alloys in relation to the pitting susceptibility. Electrochim. Acta 133, 373 (2014).
24.Yang, B.B., Li, J.X., Gong, X.J., Nie, Y., and Li, Y.P.: Effects of Cu addition on the corrosion behavior of NiCoCrMo alloys in neutral chloride solution. RSC Adv. 7, 40779 (2017).
25.Thermo-Calc Software, Ni-based alloy database, TCW 5.0 (2013). Available at: (accessed December 15, 2017).
26.Cao, C.N.: Principles of Electrochemistry of Corrosion (Chemical Industry Press, Beijing, 2008).
27.Osório, W.R., Freitas, E.S., and Garcia, A.: EIS parameters and cell spacings of an Al–Bi alloy in NaCl solution. Electrochim. Acta 108, 781 (2013).
28.Shukla, A.K. and Balasubramaniam, R.: Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros. Sci. 48, 1696 (2006).
29.Mohammadi, F., Nickchi, T., Attar, M.M., and Alfantazi, A.: EIS study of potentiostatically formed passive film on 304 stainless steel. Electrochim. Acta 56, 8727 (2011).
30.Osório, W.R., Peixoto, L.C., and Garcia, A.: The effects of Ag content and dendrite spacing on the electrochemical behavior of Pb–Ag alloys for Pb–acid battery components. J. Power Sources 238, 324 (2013).
31.Cvijović-Alagić, I., Cvijović, Z., Bajat, J., and Rakin, M.: Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corros. Sci. 83, 245 (2014).
32.Hwang, M.J., Park, E.J., Moon, W.J., Song, H.J., and Park, Y.J.: Characterization of passive layers formed on Ti–10 wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion. Corros. Sci. 96, 152 (2015).
33.Bott, A.W.: Electrochemistry of semiconductors. Curr. Sep. 17, 87 (1998).
34.Macdonald, D.D. and Sun, A.: An electrochemical impedance spectroscopic study of the passive state on alloy-22. Electrochim. Acta 51, 1767 (2006).
35.Macdonald, D.D., Sun, A., Priyantha, N., and Jayaweera, P.: An electrochemical impedance study of alloy-22 in NaCl brine at elevated temperature: II. Reaction mechanism analysis. J. Electroanal. Chem. 572, 421 (2004).
36.Fattah-alhosseini, A., Masomi, Z., and Mirzaei, M.: Investigation of the electrochemical behavior of alloy C in NaOH solutions. Anal. Bioanal. Electrochem. 6, 646 (2014).
37.Marconnet, C., Wouters, Y., Miserque, F., Dagbert, C., Petit, J.P., Galerie, A., and Feron, D.: Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution. Electrochim. Acta 54, 123 (2008).
38.Fattah-alhosseini, A., Naseri, M., Gashti, S.O., Vafaeian, S., and Keshavarz, M.K.: Effect of anodic potential on the electrochemical response of passive layers formed on the surface of coarse- and fine-grained pure nickel in borate buffer solutions. Corros. Sci. 131, 81 (2018).
39.San, X.Y., Zhang, B., Wu, B., Wei, X.X., Oguzie, E.E., and Ma, X.L.: Investigating the effect of Cu-rich phase on the corrosion behavior of super 304H austenitic stainless steel by TEM. Corros. Sci. 130, 143 (2018).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed