Skip to main content Accessibility help
×
Home

The effect of boron on the refinement of microstructure in cast cobalt alloys

  • Michael J. Bermingham (a1), Stuart D. McDonald (a2), David H. StJohn (a3) and Matthew S. Dargusch (a4)

Abstract

Controlling the grain size and morphology of cast cobalt-based components is important for optimizing a component’s in-service properties. This work investigates the role of boron on the grain size of binary cobalt–boron alloys by application of contemporary grain refinement theory. Boron solute is found to refine the width of the columnar grains but fails to promote the columnar to equiaxed transition. The lack of equiaxed grains is attributed to the thermal solidification conditions and a lack of potent nucleant particles. The refinement of the columnar grains with boron solute may be due to a growth restriction mechanism.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: m.bermingham@uq.edu.au

References

Hide All
1.Beltran, A.M.: Cobalt-base alloys, in Superalloys II, edited by Sims, C.T., Stoloff, N.S., and Hagel, W.C. (Wiley, New York, 1987), p. 135.
2.Noble, P.C: Special materials for the replacement of human joints. Met. Forum 6, 59 (1983).
3.Karimpoor, A.A., Erb, U., Aust, K.T., and Palumbo, G.: High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49, 651 (2003).
4.Karimpoor, A.A., Aust, K.T., and Erb, U.: Charpy impact energy of nanocrystalline and polycrystalline cobalt. Scr. Mater. 56, 201 (2007).
5.Karimpoor, A.A. and Erb, U.: Mechanical properties of nanocrystalline cobalt. Phys. Status Solidi A 203, 1265 (2006).
6.Wang, L., Gao, Y., Xu, T., and Xue, Q.: A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Mater. Chem. Phys. 99, 96 (2006).
7.Huang, P. and Lopez, H.F.: Strain induced ε-martensite in a Co-Cr-Mo alloy: Grain size effects. Mater. Lett. 39, 244 (1999).
8.Della Valle, A.G., Becksac, B., Anderson, J., Wright, T., Nestor, B., Pellicci, P.M., and Salvati, E.A.: Late fatigue fracture of a modern cemented forged cobalt chrome stem for total hip arthroplasty—A report of 10 cases. J. Arthroplasty 20, 1084 (2005).
9.Huang, P. and Lopez, H.F.: Athermal ε-martensite in a Co-Cr-Mo alloy: Grain size effects. Mater. Lett. 39, 249 (1999).
10.Freeman, W.R.: Investment casting, in Superalloys II, edited by Sims, C.T., Stoloff, N.S., and Hagel, W.C. (Wiley, New York, 1987), p. 411.
11.Reed, R.C.: The Superalloys Fundamentals and Applications (Cambridge University Press, New York, 2006), p. 372.
12.Xiaoping, M., Yingju, L., and Yuansheng, Y.: Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417. J. Mater. Res. 24, 2670 (2009).
13.Watmough, T.: Mold treatment to grain refine investment cast cobalt-chromium alloys. Trans. Am. Foundrymen’s Soc. 8, 481 (1980).
14.Jin, W., Bai, F., Li, T., and Yin, G.: Grain refinement of superalloy IN100 under the action of rotary magnetic fields and inoculants. Mater. Lett. 62, 1585 (2008).
15.Liu, F., Guo, X.F., and Yang, G.C.: Structural stability and non-catalytic nucleation inhibition effect of Si-Zr-B mold coating on superalloy melt. Mater. Sci. Technol. 17, 1102 (2001).
16.Liu, F. and Yang, G.C.: Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions. Int. Mater. Rev. 51, 145 (2006).
17.StJohn, D.H., Qian, M.A., Easton, M.A., Cao, P., and Hildebrand, Z.: Grain refinement of magnesium alloys. Metall. Mater. Trans. A 36, 1669 (2005).
18.Easton, M.A. and StJohn, D.H.: An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36, 1911 (2005).
19.Bermingham, M.J., McDonald, S.D., StJohn, D.H. and Dargusch, M.S.: Latest developments in understanding grain refinement of cast titanium. Mater. Sci. Forum 618619, 315 (2009).
20.Greer, A.L., Bunn, A.M., Tronche, A., Evans, P.V., and Bristow, D.J.: Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B. Acta Mater. 48, 2823 (2000).
21.Dargusch, M.S., Bermingham, M.J., McDonald, S.D., and StJohn, D.H.: Effects of boron on microstructure in cast zirconium alloys. J. Mater. Res. 25, 1695 (2010).
22.Maxwell, I. and Hellawell, A.: A simple model for grain refinement during solidification. Acta Mater. 23, 229 (1975).
23.Easton, M.A. and StJohn, D.H.: Grain refinement of aluminium alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A 30A, 1625 (1999).
24.Alloy phase diagrams, in ASM Handbook, Vol. 3 (ASM International, Materials Park, OH, 1990).
25.Greer, A.L., Cooper, P.S., Meredith, M.W., Schnider, W., Schumacher, P., Spittle, J.A., and Tronche, A.: Grain refinement of aluminium alloys by inoculation. Adv. Eng. Mater. 5, 81 (2003).
26.Bermingham, M.J., McDonald, S.D., StJohn, D.H., and Dargusch, M.S.: Beryllium as a grain refiner in titanium. J. Alloy. Comp. 481, L20 (2009).
27.Hunt, J.D.: Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. 65, 75 (1984).
28.Drewes, K., Schaefers, K., Rosner-Kuhn, M., and Frohberg, M.G.: Measurements of dendritic growth and recalescence rates in undercooled melts of cobalt. Mater. Sci. Eng. A 241, 99 (1997).
29.Genders, R.: The interpretation of the macrostructure of cast metals. J. Inst. Met. 35, 259 (1926).
30.Charlmers, B.: Structure of ingots. J. Aust. Inst. Met. 8, 255 (1963).
31.Jackson, K.A., Hunt, J.D., Uhlmann, D.R., and Seward, T.P. III: On origin of equiaxed zone in castings. Trans. Metall. Soc. AIME 236, 149 (1966).
32.Ohno, A., Motegi, T., and Soda, H.: Origin of the equiaxed crystals in castings. Trans. Iron Steel Inst. Jpn. 11, 18 (1971).
33.Hutt, J. and StJohn, D.H.: The origins of the equiaxed zone—Review of theoretical and experimental work. Int. J. Cast Met. Res. 11, 13 (1998).
34.Zhuang, L.Z. and Langer, E.W.: Effects of cooling rate control during the solidification process on the microstructure and mechanical properties of cast Co-Cr-Mo alloy used for surgical implants. J. Mater. Sci. 24, 381 (1989).
35.Riddihough, M.: Properties of cobalt-base investment-cast alloys. Foundry Trade J. 5, 421 (1959).
36.Gomez, M., Mancha, H., Salinas, A., Rodriguez, J.L., Escobedo, J., Castro, M., and Mendez, M.: Relationship between microstructure and ductility of investment cast ASTM F-75 implant alloy. J. Biomed. Mater. Res. 34, 157 (1997).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed