Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T22:18:39.326Z Has data issue: false hasContentIssue false

Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites

Published online by Cambridge University Press:  23 August 2018

Santiago Villegas-Villalobos
Affiliation:
Master in Process Design and Management, Research Group on Energy, Materials and Environment, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia
Luis E. Díaz
Affiliation:
Bioprospecting Research Group, Universidad de La Sabana, Chía 140013, Colombia
Guillermo Vilariño-Feltrer
Affiliation:
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain
Ana Vallés-Lluch
Affiliation:
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain; and Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
José A. Gómez-Tejedor
Affiliation:
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain; and Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
Manuel F. Valero*
Affiliation:
Research Group on Energy, Materials and Environment, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia
*
a)Address all correspondence to this author. e-mail: manuelvv@unisabana.edu.co
Get access

Abstract

Polyurethane/cellulose composites were synthesized from castor-oil-derived polyols and isophorone diisocyanate using dibutyltin dilaurate (DBTDL) as the catalyst. Materials were obtained by adding 2% cellulose in the form of either microcrystals (20 μm) or nanocrystals obtained by acid hydrolysis. The aim was to assess the effects of filler particle size and the use of a catalyst on the physicochemical properties and biological response of these composites. The addition of the catalyst was found to be essential to prevent filler aggregations and to enhance the tensile strength and elongation at break. The cellulose particle size influenced the composite properties, as its nanocrystals heighten hydrogen bond interactions between the filler surface and polyurethane domains, improving resistance to hydrolytic degradation. All hybrids retained cell viability, and the addition of DBTDL did not impair their biocompatibility. The samples were prone to calcification, which suggests that they could find application in the development of bioactive materials.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nabid, M.R. and Omrani, I.: Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery. Mater. Sci. Eng., C 69, 532 (2016).CrossRefGoogle ScholarPubMed
Rocco, K.A., Maxfield, M.W., Best, C.A., Dean, E.W., and Breuer, C.K.: In vivo applications of electrospun tissue-engineered vascular grafts: A review. Tissue Eng., Part B 20, 628 (2014).CrossRefGoogle ScholarPubMed
Gómez, J.L.: Polymer/Ceramic Hybrid Material. Spain, International Patent WO/2013/178852 (The assignee institution for this patent is the Universitat Politécnica De Valéncia. 2013).Google Scholar
Patel, D.K., Biswas, A., and Maiti, P.: Nanoparticle-induced phenomena in polyurethanes. In Advances in Polyurethane Biomaterials, Cooper, S.L. and Guan, J., eds. (Elsevier Science and Technology, Cambridge, England, 2016); p. 171.CrossRefGoogle Scholar
Cherian, B.M., Leão, A.L., De Souza, S.F., Costa, L.M.M., De Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R., and Thomas, S.: Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr. Polym. 86, 1790 (2011).CrossRefGoogle Scholar
Fang, W., Arola, S., Malho, J.M., Kontturi, E., Linder, M.B., and Laaksonen, P.: Noncovalent dispersion and functionalization of cellulose nanocrystals with proteins and polysaccharides. Biomacromolecules 17, 1458 (2016).CrossRefGoogle ScholarPubMed
Alagi, P., Choi, Y.J., Seog, J., and Hong, S.C.: Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes. Ind. Crops Prod. 87, 78 (2016).CrossRefGoogle Scholar
Gurunathan, T., Mohanty, S., and Nayak, S.K.: Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Prog. Org. Coat. 80, 39 (2015).CrossRefGoogle Scholar
Omonov, T.S., Kharraz, E., and Curtis, J.M.: Camelina (Camelina sativa) oil polyols as an alternative to castor oil. Ind. Crops Prod. 107, 378 (2017).CrossRefGoogle Scholar
Oprea, S., Potolinca, V.O., Gradinariu, P., Joga, A., and Oprea, V.: Synthesis, properties, and fungal degradation of castor-oil-based polyurethane composites with different cellulose contents. Cellulose 23, 2515 (2016).CrossRefGoogle Scholar
Saralegi, A., Gonzalez, M.L., Valea, A., Eceiza, A., and Corcuera, M.A.: The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos. Sci. Technol. 92, 27 (2014).CrossRefGoogle Scholar
Kaushik, A. and Garg, A.: Castor oil based polyurethane nanocomposites with cellulose nanocrystallites fillers. Adv. Mater. Res. 856, 309 (2013).CrossRefGoogle Scholar
Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., and Yue, C.: Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr. Polym. 87, 2068 (2012).CrossRefGoogle Scholar
Wik, V., Aranguren, M., and Mosiewicki, M.: Castor oil-based polyurethanes containing cellulose nanocrystals. Polym. Eng. Sci. 51, 1389 (2010).CrossRefGoogle Scholar
Ryszkowska, J., Bil, M., Woźniak, P., Lewandowska-Szumieł, M., and Kurzydłowski, K.: Influence of catalyst type on biocompatibility of polyurethanes. Mater. Sci. Forum 514–516, 887 (2006).CrossRefGoogle Scholar
Tanzi, M.C., Verderio, P., Lampugnani, M.G., Resnati, M., Dejana, E., and Sturani, E.: Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. J. Mater. Sci.: Mater. Med. 5, 393 (1994).Google Scholar
Lundin, J.G., Daniels, G.C., Mcgann, C.L., Stanbro, J., Watters, C., Stockelman, M., and Wynne, J.H.: Multi-functional polyurethane hydrogel foams with tunable mechanical properties for wound dressing applications. Macromol. Mater. Eng. 302, 1 (2017).CrossRefGoogle Scholar
Conejero-García, Á., Gimeno, H.R., Sáez, Y.M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., and Vallés-Lluch, A.: Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). Eur. Polym. J. 87, 406 (2017).CrossRefGoogle Scholar
Rudnik, E., Resiak, I., and Wojciechowski, C.: Thermoanalytical investigations of polyurethanes for medical purposes. Thermochim. Acta 320, 285 (1998).CrossRefGoogle Scholar
Luong, N.D., Sinh, L.H., Minna, M., Jürgen, W., Torsten, W., Matthias, S., and Jukka, S.: Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. Eur. Polym. J. 81, 129 (2016).Google Scholar
Bondeson, D., Mathew, A., and Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171 (2006).CrossRefGoogle Scholar
Capadona, J.R., Van Den Berg, O., Capadona, L.A., Schroeter, M., Rowan, S.J., Tyler, D.J., and Weder, C.: A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765 (2007).CrossRefGoogle ScholarPubMed
Boloori Zadeh, P., Corbett, S.C., and Nayeb-Hashemi, H.: In vitro calcification study of polyurethane heart valves. Mater. Sci. Eng., C 35, 335 (2014).CrossRefGoogle ScholarPubMed
Habibi, Y. and Dufresne, A.: Nanocrystals from natural polysaccharides. In Handbook of Nanophysics: Nanoparticles Quantum Dots, Sattler, K.D., ed. (CRC Press, Boca Raton, Florida, 2010); p. 718.Google Scholar
Dave, V.J. and Patel, H.S.: Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. J. Saudi Chem. Soc. 21, 18 (2017).CrossRefGoogle Scholar
Datta, J. and Głowińska, E.: Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Ind. Crops Prod. 61, 84 (2014).CrossRefGoogle Scholar
Prisacariu, C.: Structural studies on polyurethane elastomers. In Polyurethane Elastomers (Springer, Vienna, Austria, 2011); pp. 2360.CrossRefGoogle Scholar
Senich, G.A. and MacKnight, W.J.: Fourier transform infrared thermal analysis of a segmented polyurethane. Macromolecules 13, 106 (1980).CrossRefGoogle Scholar
Sun, C.: True density of microcrystalline cellulose. J. Am. Pharm. Assoc. 94, 2132 (2005).Google ScholarPubMed
Yilgör, I., Yilgör, E., and Wilkes, G.L.: Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer 58, A1 (2015).CrossRefGoogle Scholar
Benhamou, K., Kaddami, H., Magnin, A., Dufresne, A., and Ahmad, A.: Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohydr. Polym. 122, 202 (2015).CrossRefGoogle ScholarPubMed
Santamaria-Echart, A., Ugarte, L., García-Astrain, C., Arbelaiz, A., Corcuera, M.A., and Eceiza, A.: Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr. Polym. 151, 1203 (2016).CrossRefGoogle ScholarPubMed
Javni, I., Petrović, Z.S., Guo, A., and Fuller, R.: Thermal stability of polyurethanes based on vegetable oils. J. Appl. Polym. Sci. 77, 1723 (2000).3.0.CO;2-K>CrossRefGoogle Scholar
Kumar, M.N.S. and Siddaramaiah, : Thermogravimetric analysis and morphological behavior of castor oil based polyurethane–polyester nonwoven fabric composites. J. Appl. Polym. Sci. 106, 3512 (2007).CrossRefGoogle Scholar
Oprea, S., Joga, A., Zorlescu, B., and Oprea, V.: Effect of the hard segment structure on properties of resorcinol derivatives-based polyurethane elastomers. High Perform. Polym. 26, 859 (2014).CrossRefGoogle Scholar
Narine, S.S., Kong, X., Bouzidi, L., and Sporns, P.: Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers. J. Am. Oil Chem. Soc. 84, 55 (2007).CrossRefGoogle Scholar
Lin, S., Huang, J., Chang, P.R., Wei, S., Xu, Y., and Zhang, Q.: Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydr. Polym. 95, 91 (2013).CrossRefGoogle ScholarPubMed
Yakovlev, Y.V., Gagolkina, Z.O., Lobko, E.V., Khalakhan, I., and Klepko, V.V.: The effect of catalyst addition on the structure, electrical and mechanical properties of the cross-linked polyurethane/carbon nanotube composites. Compos. Sci. Technol. 144, 208 (2017).CrossRefGoogle Scholar
Cao, X., Xu, C., Wang, Y., Liu, Y., Liu, Y., and Chen, Y.: New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Biomacromolecules 8, 899 (2007).CrossRefGoogle Scholar
Marcovich, N.E., Auad, M.L., Bellesi, N.E., Nutt, S.R., and Aranguren, M.I.: Cellulose micro/nanocrystals reinforced polyurethane. J. Mater. Res. 21, 870 (2006).CrossRefGoogle Scholar
Girouard, N.M., Xu, S., Schueneman, G.T., Shofner, M.L., and Meredith, J.C.: Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl. Mater. Interfaces 8, 1458 (2016).CrossRefGoogle ScholarPubMed
Chawla, J.S. and Amiji, M.M.: Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 249, 127 (2002).CrossRefGoogle ScholarPubMed
Azevedo, H. and Reis, R.: Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In Biodegradable Systems in Tissue Engineering and Regenerative Medicine, Reis, R. and San Román, J., eds. (CRC Press, Boca Raton, Florida, 2005); pp. 177202.Google Scholar
Mondal, S. and Martin, D.: Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polym. Degrad. Stab. 97, 1553 (2012).CrossRefGoogle Scholar
Hocker, S.J.A., Hudson-Smith, N.V., Smith, P.T., Komatsu, C.H., Dickinson, L.R., Schniepp, H.C., and Kranbuehl, D.E.: Graphene oxide reduces the hydrolytic degradation in polyamide-11. Polymer 126, 248 (2017).CrossRefGoogle Scholar
Marzec, M., Kucińska-Lipka, J., Kalaszczyńska, I., and Janik, H.: Development of polyurethanes for bone repair. Mater. Sci. Eng., C 80, 736 (2017).CrossRefGoogle ScholarPubMed
Gorna, K. and Gogolewski, S.: Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J. Biomed. Mater. Res. 67A, 813 (2003).CrossRefGoogle Scholar
Golomb, G. and Wagner, D.: Development of a new in vitro model for studying implantable polyurethane calcification. Biomaterials 12, 397 (1991).CrossRefGoogle ScholarPubMed
Tang, Z.G., Teoh, S.H., McFarlane, W., Poole-warren, L.A., and Umezu, M.: In vitro calcification of UHMWPE/PU composite membrane. Mater. Sci. Eng., C 20, 149 (2002).CrossRefGoogle Scholar
Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M.C., Imani, R., Baheiraei, N., Farokhi, M., and Farè, S.: Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater. Sci. Eng., C 82, 130 (2018).CrossRefGoogle ScholarPubMed
Lundin, J.G., Mcgann, C.L., Daniels, G.C., Streifel, B.C., and Wynne, J.H.: Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Mater. Sci. Eng., C 79, 702 (2017).CrossRefGoogle ScholarPubMed
International Organization for Standardization: Tests for in Vitro Cytotoxicity, in ISO 10993-5: Biological Evaluation of Medical Devices (International Organization for Standardization, Geneva, Switzerland, 2009); pp. 134.Google Scholar
Supplementary material: Image

Villegas-Villalobos et al. supplementary material

Villegas-Villalobos et al. supplementary material 1

Download Villegas-Villalobos et al. supplementary material(Image)
Image 100.2 KB