Skip to main content Accessibility help
×
Home

The effect of acetylene as a dielectric on modification of TiNi-based shape memory alloys by dry EDM

  • Tyau-Song Huang (a1), Shy-Feng Hsieh (a1), Sung-Long Chen (a2), Ming-Hong Lin (a2), Shih-Fu Ou (a3) and Wei-Tse Chang (a3)...

Abstract

This study modified the surfaces of three kinds of TiNi-based shape memory alloys (SMAs) by dry electrical discharge machining (EDM) in nitrogen (N2) and acetylene (C2H2) gas mixture. The effects of composition of the dielectric medium and work-piece on the machining performance and surface characteristics were investigated. Increasing the ratio of acetylene gas in gas mixture was beneficial for improving the material removal rate (MRR). However, adding a large amount of acetylene gas resulted in unstable discharge. A recast layer, comprising nitrides and carbides, which well adhered on the EDMed surface exhibited high hardness. Among Ti50Ni50, Ti50Ni49.5Cr0.5, and Ti40.5Ni49.5Zr10 SMA as a work-piece, Ti40.5Ni49.5Zr10 SMA has the lowest MRR owing to it possessed the highest melting temperature and thermal conductivity. The recast layer on Ti40.5Ni49.5Zr10 SMA, comprising zirconium nitride, exhibited the highest hardness and adhesion among all the SMAs. However, the high-hardness recast layer deteriorated the shape recovery of the SMA.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: m9203510@gmail.com

References

Hide All
1.Hsieh, S.F., Chen, S.L., Lin, M.H., Ou, S.F., Lin, W.T., and Huang, M.S.: Crystallization and carbonization of an electrical discharge machined Zr-based bulk metallic glass alloy. J. Mater. Res. 28, 3177 (2013).
2.Saha, S.K. and Choudhury, S.K.: Experimental investigation and empirical modeling of the dry electric discharge machining process. Int. J. Mach. Tools Manuf. 49, 297 (2009).
3.Kunieda, M. and Yoshida, M.: Electrical discharge machining in Gas. CIRP. Ann. Manuf. Technol. 46, 143 (1997).
4.Zhang, Q.H., Zhang, J.H., Deng, J.X., Qin, Y., and Niu, Z.W.: Ultrasonic vibration electrical discharge machining in gas. J. Mater. Process. Technol. 129, 135 (2002).
5.Curodeau, A., Richard, M., and Frohn-Villeneuve, L.: Molds surface finishing with new EDM process in air with thermoplastic composite electrodes. J. Mater. Process. Technol. 149, 278 (2004).
6.Lee, H.G., Simao, J., Aspinwall, D.K., Dewes, R.C., and Voice, W.: Electrical discharge surface alloying. J. Mater. Process. Technol. 149, 334 (2004).
7.ZhanBo, Y., Takahashi, J., and Kunieda, M.: Dry electrical discharge machining of cemented carbide. J. Mater. Process. Technol. 149, 353 (2004).
8.Starosvetsky, D. and Gotman, I.: Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy. Biomaterials 22, 1853 (2001).
9.Kazuhiko, E., Rohit, S., Yoshima, A., and Hiroki, O.: Effects of titanium nitride coatings on surface and corrosion characteristics of Ni-Ti Alloy. Dent. Mater. J. 13, 228 (1994).
10.Baba, K., Hatada, R., Flege, S., Kraft, G., and Ensinger, W.: Formation of thin carbide films of titanium and tantalum by methane plasma immersion ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 257, 746 (2007).
11.Hsieh, S.F., Chen, S.L., Lin, H.C., Lin, M.H., Huang, J.H., and Lin, M.C.: A study of TiNiCr ternary shape memory alloys. J. Alloys Compd. 494, 155 (2010).
12.Lin, H.C. and Wu, S.K.: Strengthening effect on shape recovery characteristic of the equiatomic TiNi alloy. Scr. Metall. Mater. 26, 59 (1992).
13.Lin, H.C., Lin, K.M., and Cheng, I.C.: The electro-discharge machining characteristics of TiNi shape memory alloys. J. Mater. Sci. 36, 399 (2001).
14.Ramaswamy, D.V.N.: Material and Electrical Characterization of Titanium Nitride/Silicon Dioxide Gate Stacks (ProQuest, Ann Arbor, 2008).
15.Holleck, H.: Material selection for hard coatings. J. Vac. Sci. Technol., A 4, 2661 (1986).
16.Baker, T.W.: The coefficient of thermal expansion of zirconium nitride. Acta Crystallogr. 11, 300 (1958).
17.Zhao, J., Li, L., Li, D., and Gu, H.: A study on biocompatibility of TiN thin films deposited by dual-energy ion beam assisted deposition. J. Adhes. Sci. Technol. 18, 1003 (2004).
18.Jin, S., Zhang, Y., Wang, Q., Zhang, D., and Zhang, S.: Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids Surf., B 101, 343 (2013).
19.Jeyachandran, Y.L. and Narayandass, S.K.: The effect of thickness of titanium nitride coatings on bacterial adhesion. Trends Biomater. Artif. Organs 24, 90 (2010).
20.Wickens, D.J., West, G., Kelly, P.J., Verran, J., Lynch, S., and Whitehead, K.A.: Antimicrobial activity of nanocomposite zirconium nitride/silver coatings to combat external bone fixation pin infections. Int. J. Artif. Organs 35, 817 (2012).
21.Kadam, S.N., Jagdeo, K.R., and Nair, M.R.: Corrosion study of ZrN coated Ti6Al4V alloy in normal saline (0.9% NaCl) solution. Int. Refereed J. Eng. Sci. 4, 42 (2012).
22.Shtansky, D.V., Gloushankova, N.A., Bashkova, I.A., Petrzhik, M.I., Sheveiko, A.N., Kiryukhantsev-Korneev, F.V., Reshetov, I.V., Grigoryan, A.S., and Levashov, E.A.: Multifunctional biocompatible nanostructured coatings for load-bearing implants. Surf. Coat. Technol. 201, 4111 (2006).
23.Brama, M., Rhodes, N., Hunt, J., Ricci, A., Teghil, R., Migliaccio, S., De Rocca, C., Leccisotti, S., Lioi, A., Scandurra, M., De Maria, C., Ferro, D., Pu, F., Panzini, G., Politi, L., and Scandurr, R.: Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials 28, 595 (2007).
24.Chu, C.L., Ji, H.L., Yin, L.H., Pu, Y.P., Lin, P.H., and Chu, P.K.: Fabrication, properties, and cytocompatibility of ZrC film on electropolished NiTi shape memory alloy. Mater. Sci. Eng., C 31, 423 (2011).
25.Ding, M.H., Zhang, H.S., Zhang, C., and Jin, X.: Characterization of ZrC coatings deposited on biomedical 316L stainless steel by magnetron sputtering method. Surf. Coat. Technol. 224, 34 (2013).
26.Shatynski, S.R.: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105 (1979).
27.Huang, T.S., Hsieh, S.F., Chen, S.L., Lin, M.H., Ou, S.F., and Chang, W.T.: Surface modification of TiNi-based shape memory alloys by dryelectrical discharge machining. J. Mater. Process. Technol. 221, 279 (2015).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed