Skip to main content Accessibility help

Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding

  • Seamus A. Curran (a1), Donghui Zhang (a2), Wudyalew T. Wondmagegn (a3), Amanda V. Ellis (a4), Jiri Cech (a5), Siegmar Roth (a5) and David L. Carroll (a6)...


Composite formation between carbon nanotubes and polymers can dramatically enhance the electrical and thermal properties of the combined materials. We have prepared a composite from polystyrene and multi-walled carbon nanotubes (MWCNT) and, unlike traditional techniques of composite formation, we chose to polymerize styrene from the surface of dithiocarboxylic ester-functionalized MWCNTs to fabricate a unique composite material, a new technique dubbed “gRAFT” polymerization. The thermal stability of the polymer matrix in the covalently linked MWCNT-polystyrene composite is significantly enhanced, as demonstrated by a 15 °C increase of the decomposition temperature than that of the noncovalently linked MWCNT-polystyrene blend. Thin films made from the composite with low MWCNT loadings (<0.9 wt%) are optically transparent, and we see no evidence of aggregation of nanotubes in the thin film or solution. The result from the conductivity measurement as a function of MWCNT loadings suggests two charge transport mechanisms: charge hopping in low MWCNT loadings (0.02–0.6 wt%) and ballistic quantum conduction in high loadings (0.6–0.9 wt%). The composite exhibits dramatically enhanced conductivity up to 33 S m−1 at a low MWCNT loading (0.9 wt%).


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
2.Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999), p. 35.
3.Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernández, E.: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. London, Ser. A 362, 2065 (2004).
4.Ouyang, M., Huang, J., Lieber, C.M.: Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1018 (2002).
5.Ugawa, A., Rinzler, A.G., Tanner, D.B.: Far infrared gaps in single-wall carbon nanotubes. Phys. Rev. B 60, R11305 (1999).
6.Itkis, M.E., Niyogi, S., Meng, M., Hamon, M., Hu, H., Haddon, R.C.: Spectroscopic study of the Fermi level electronic structure of single walled carbon nanotubes. Nano Lett. 2, 155 (2002).
7.Ouyang, M., Huang, J-L., Cheung, C.L., Lieber, C.M.: Energy gaps in “metallic” single-walled carbon nanotubes. Science 292, 702 (2001).
8.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996).
9.Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A., Casavant, M.J., Schmidt, J., Smalley, R.E.: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77, 666 (2000).
10.Langer, L., Stockman, L., Heremans, J.P., Bayot, V., Olk, C.H., Van Haesendonck, C., Bruynseraede, Y., Issi, J-P.: Electrical resistance of a carbon nanotube bundle. J. Mater. Res. 9, 927 (1994).
11.Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).
12.Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514 (1999). Heer, W.A., Châtelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270, 1179 (1995).
14.Blake, R., Gun’ko, Y.K., Coleman, J., Cadek, M., Fonseca, A., Nagy, J.B., Blau, W.J.: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc. 126, 10226 (2004).
15.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787 (2002).
16.Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 1744 (1998).
17.Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 12, 750 (2000).
18.Murakami, H., Nomura, T., Nakashima, N.: Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378, 481 (2003).
19.Hedderman, T.G., Keogh, S.M., Chambers, G., Byrne, H.J.: Solubilization of SWNTs with organic dye molecules. J. Phys. Chem. B 108, 18860 (2004).
20.Zhang, J., Lee, J-K., Wu, Y., Murray, R.W.: Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 3, 403 (2003).
21.Lin, Y., Rao, A.M., Sadanadan, B., Kenik, E.A., Sun, Y-P.: Functionalizing multiple-walled carbon nanotubes with aminopolymers. J. Phys. Chem. B 106, 1294 (2002).
22.Kong, H., Gao, C., Yan, D.: Controlled functionalization of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412 (2004).
23.Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y., Ajayan, P.M.: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).
24.Qin, S., Qin, D., Ford, W.T., Resasco, D.E., Herrera, J.E.: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37, 752 (2004).
25.Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N. Wong Shi, Shim, M., Li, Y., Kim, W., Utz, P.J., Dai, H.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984 (2003).
26.Azamian, B.R., Coleman, K.S., Davis, J.J., Hanson, N., Green, M.L.H.: Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 4, 366 (2002).
27.Banerjee, S., Stanislaus, S. Wong: In situ quantum dot growth on multi-walled carbon nanotubes. J. Am. Chem. Soc. 125, 10342 (2003).
28.Chaudhary, S., Kim, J.H., Singh, K.V., Ozkan, M.: Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals. Nano Lett. 4, 2415 (2004).
29.Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E.: Electronic structure control of single-wall carbon nanotube functionalization. Science 301, 1519 (2003).
30.Curran, S.A., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S., Strevens, A.: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater. 10, 1091 (1998).
31.Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212 (1994).
32.Lin, Y., Zhou, B., Fernado, K.A.S., Liu, P., Allard, L.F., Sun, Y-P.: Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36, 7199 (2003).
33.Kaiser, A.B.: Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1 (2001).
34.Kim, B., Lee, J., Yu, I.: Electrical properties of single-wall carbon nanotube and epoxy composites. J. Appl. Phys. 94, 6724 (2003).
35.Grimes, C.A., Mungle, C., Kouzoudis, D., Fang, S., Eklund, P.C.: The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem. Phys. Lett. 319, 460 (2000).
36.Coleman, J.N., Curran, S.A., Dalton, A.B., Davey, A.P., McCarthy, B., Blau, W.J., Barklie, R.C.: Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 58, R7492 (1998).
37.Allaoui, A., Bai, S., Cheng, H.M., Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 1993 (2002).
38.Farmer, S.C., Patten, T.E.: (Thiocarbonyl-α-thio)carboxylic acid derivatives as transfer agents in reversible addition-fragmentation chain-transfer polymerizations. J. Polym. Sci. Part A: Polym. Chem. 40, 555 (2002).
39.Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992).
40.Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M.: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52 (1998).
41.Satishkumar, B.C., Govindaraj, A., Mofokeng, J., Subbanna, G.N., Rao, C.N.R.: Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B: At. Mol. Opt. Phys. 29, 4925 (1996).
42.Zhang, N., Xie, J., Varadan, V.K.: Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Mater. Struct. 11, 962 (2002).
43.Sudalai, A., Kanagasabapathy, S., Benicewicz, B.S.: Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Org. Lett. 2, 3213 (2000).
44.Fourier, J., Boiteax, G., Seytre, G., Marichy, G.: Percolation network of polypyrrole in conducting polymer composites. Synth. Met. 84, 839 (1997).
45.Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., Warth, H.: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymers 45, 739 (2004).
46.Pötschke, P., Bhattacharyya, A.R., Janke, A.: Melt mixing of polycarbonate with multi-walled carbon nanotubes: microscopic studies on the state of dispersion. Eur. Polym. J. 40, 137 (2003).
47.Foygel, M., Morris, R.D., Anez, D., French, S., Sobolev, V.L.: Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 71, 104201 (2005).
48.Carmona, F., Mouney, C.: Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. J. Mater. Sci. 27, 1322 (1992).
49.Langer, L., Bayot, V., Grivei, E., Issi, J-P., Heremans, J.P., Olk, C.H., Stockman, L., van Haesendonck, C., Bruynseraede, Y.: Quantum transport in a multi-walled carbon nanotube. Phys. Rev. Lett. 76, 479 (1996).
50.Chico, L., Benedict, L.X., Louie, S.G., Cohen, M.L.: Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54, 2600 (1996).
51.Sanvito, S., Kwon, Y-K., Tomanek, D., Lámbert, C.J.: Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 84, 1974 (2000).
52.Levi, N., Czerw, R., Xing, S., Iyer, P., Carroll, D.L.: Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Lett. 4, 1267 (2004).


Related content

Powered by UNSILO

Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding

  • Seamus A. Curran (a1), Donghui Zhang (a2), Wudyalew T. Wondmagegn (a3), Amanda V. Ellis (a4), Jiri Cech (a5), Siegmar Roth (a5) and David L. Carroll (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.