Skip to main content Accessibility help

A dual triangular pyramidal indentation technique for material property evaluation

  • Minsoo Kim (a1), Jin Haeng Lee (a2), Felix Rickhey (a3) and Hyungyil Lee (a3)


In this study, a method using dual triangular pyramidal indenters is suggested for material property evaluation. First, we demonstrate that the load–depth curves and the projected contact areas from conical and triangular pyramidal indentations are generally different. Nonequal projected contact areas of two indenters and nonplanar contact line of Berkovich indenter are the main sources of different indentation characteristics of two indenters. For this reason, an independent approach to the triangular pyramidal indentation is needed. With finite element (FE) indentation analyses for various materials, we investigate the relationships between material properties, indentation parameters, and load–depth curves. Based on the FE solutions, we suggest mapping functions for evaluating material properties from indentations by two triangular pyramidal WC indenters, which differ in their centerline-to-face angles. Elastic modulus, yield strength, and strain hardening exponent are obtained with an average error of <3%.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Chen, X., Yan, J., and Karlsson, A.M.: On the determination of residual stress and mechanical properties by indentation. Mater. Sci. Eng., A 416, 139149 (2006).
2. Larsson, P.L. and Blanchard, P.: On the correlation between residual stresses and global indentation quantities: Numerical results for general biaxial stress fields. Mater. Des. 37, 435442 (2012).
3. Lee, J.H., Lim, D., Hyun, H.C., and Lee, H.: A numerical approach to indentation technique to evaluate material properties of film-on-substrate systems. Int. J. Solids Struct. 49, 10331043 (2012).
4. Kick, F.: Das Gesetz der proportionalen Widerstände und seine Anwendungen (in German) (Felix–Verlag, Leipzig, 1885).
5. Chen, X., Ogasawara, N., Zhao, M., and Chiba, N.: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids 55, 16181660 (2007).
6. Lee, J.H., Lee, H., and Kim, D.H.: A numerical approach to elastic modulus evaluation using conical indenter with finite tip radius. J. Mater. Res. 23, 25282537 (2008).
7. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 38993918 (2001).
8. Chollacoop, N., Dao, M., and Suresh, S.: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 37133729 (2003).
9. Tabor, D.: The Hardness of Metals (Clarendon Press, Oxford, 1951).
10. Cao, Y.P. and Lu, J.: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 40234032 (2004).
11. Lee, J.H., Kim, T., and Lee, H.: A study on robust indentation techniques to evaluate elastic–plastic properties of metals. Int. J. Solids. Struct. 47, 647664 (2010).
12. Beghini, M., Bertini, L., and Fontanari, V.: Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 24412459 (1994).
13. Bobzin, K., Bagcivan, N., Theiß, S., Brugnara, R., and Perne, J.: Approach to determine stress strain curves by FEM supported nanoindentation. Materialwiss. Werkstofftech. 44, 571576 (2013).
14. Juliano, T.F., VanLandingham, M.R., Weerasooriya, T., and Moy, P.: Extracting stress–strain and compressive yield stress information from spherical indentation. Army Res. Lab., ARL-TR-4229, 1–16 (2007).
15. Alkorta, J., Martinez-Esnaola, J.M., and Gil Sevillano, J.: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data. J. Mater. Res. 20, 432437 (2005).
16. Luo, J., Lin, J., and Dean, T.A.: A study on the determination of mechanical properties of a power-law material by its indentation force–depth curve. Philos. Mag. 86, 28812905 (2006).
17. Cheng, Y.T. and Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91149 (2004).
18. Swaddiwudhipong, S., Tho, K.K., Liu, Z.S., and Zeng, K.: Material characterization based on dual indenters. Int. J. Solids Struct. 42, 6983 (2005).
19. Bucaille, J.L., Stauss, S., Felder, E., and Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 16631678 (2003).
20. Le, M.: Materials characterization by dual indenter. Int. J. Solids Struct. 46, 29882998 (2009).
21. Hyun, H.C., Kim, M., Lee, J.H., and Lee, H.: A dual conical indentation technique based on FEA solutions for property evaluation. Mech. Mater. 43, 313331 (2011).
22. Shim, S., Oliver, W.C., and Pharr, G.M.: A comparison of 3d finite element simulation for Berkovich and conical indentation of fused silica. Int. J. Surf. Sci. Eng. 1, 259273 (2007).
23. Min, L., Chen, W.M., Liang, N.G., and Wang, L.D.: A numerical study of indentation using indenters of different geometry. J. Mater. Res. 19, 7378 (2004).
24. Abaqus, Abaqus User’s Manual, Version 6.12: (Dassault Systemes, Providence, RI, USA, 2012).
25. Rice, J.R. and Rosengren, G.F.: Plane strain deformation near a crack-tip in a power law hardening material. J. Mech. Phys. Solids 16, 112 (1968).
26. Lee, H., Lee, J.H., and Pharr, G.M.: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 20372069 (2005).
27. Qin, J., Huang, Y., Hwang, K.C., Song, J., and Pharr, G.M.: The effect of indenter angle on the microindentation hardness. Acta Mater. 55, 61276132 (2007).
28. Hay, J.L. and Crawford, B.: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26, 727738 (2010).
29. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641583 (1992).
30. King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 16571664 (1987).
31. Hay, J.C., Bolshakov, A., and Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 22962305 (1999).
32. Pharr, G.M.: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253, 151159 (1998).
33. Kim, M., Bang, S., Rickhey, F., and Lee, H.: Correction of indentation load–depth curve based on elastic deformation of sharp indenter. Mech. Mater. 69, 146158 (2014).


A dual triangular pyramidal indentation technique for material property evaluation

  • Minsoo Kim (a1), Jin Haeng Lee (a2), Felix Rickhey (a3) and Hyungyil Lee (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed